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Preface

Econometrics by Example (EBE) is written primarily for undergraduate students in

economics, accounting, finance, marketing, and related disciplines. It is also intended

for students in MBA programs and for researchers in business, government, and re-

search organizations.

There are several excellent textbooks in econometrics, written from very elemen-

tary to very advanced levels. The writers of these books have their intended audiences.

I have contributed to this field with my own books, Basic Econometrics (McGraw-Hill,

5th edn, 2009) and Essentials of Econometrics (McGraw-Hill, 4th edn, 2009). These

books have been well received and have been translated into several languages. EBE is

different from my own books and those written by others in that it deals with major

topics in econometrics from the point of view of their practical applications. Because

of space limitations, textbooks generally discuss econometric theory and illustrate ec-

onometric techniques with just a few examples. But space does not permit them to

deal with concrete examples in detail.

In EBE, each chapter discusses one or two examples in depth. To give but one illus-

tration of this, Chapter 8 discusses binary dummy dependent variable regression

models. This specific example relates to the decision to smoke or not to smoke, taking

the value of 1 if a person smokes or the value of 0 if he/she does not smoke. The data

consist of a random sample of 119 US males. The explanatory variables considered are

age, education, income, and price of cigarettes. There are three approaches to model-

ing this problem: (1) ordinary least-squares (OLS), which leads to the linear probabil-

ity model (LPM), (2) the logit model, based on the logistic probability distribution, and

(3) the probit model, based on the normal distribution.

Which is a better model? In assessing this, we have to consider the pros and cons of

all of these three approaches and evaluate the results based on these three competing

models and then decide which one to choose. Most textbooks have a theoretical dis-

cussion about this, but do not have the space to discuss all the practical aspects of a

given problem.

This book is self-contained in that the basic theory underlying each topic is dis-

cussed without complicated mathematics. It has an appendix that discusses the basic

concepts of statistics in a user-friendly manner and provides the necessary statistical

background to follow the concepts covered therein. In EBE all the examples I analyse

look at each problem in depth, starting with model formulation, estimation of the

chosen model, testing hypotheses about the phenomenon under study, and post-esti-

mation diagnostics to see how well the model performs Due attention is paid to com-

monly encountered problems, such as multicollinearity, heteroscedasticity,

autocorrelation, model specification errors, and non-stationarity of economic time

series. This step-by-step approach, from model formulation, through estimation and



hypothesis-testing, to post-estimation diagnostics will provide a framework for less

experienced students and researchers. It will also help them to understand empirical

articles in academic and professional journals.

The specific examples discussed in this book are:

1 Determination of hourly wages for a group of US workers

2 Cobb–Douglas production function for the USA

3 The rate of growth of real GDP, USA, 1960–2007

4 The relationship between food expenditure and total expenditure

5 Log-linear model of real GDP growth

6 Gross private investment and gross private savings, USA, 1959–2007

7 Quarterly retail fashion sales

8 Married women's hours of work

9 Abortion rates in the USA

10 US consumption function, 1947–2000

11 Deaths from lung cancer and the number of cigarettes smoked

12 Model of school choice

13 Attitude toward working mothers

14 Decision to apply to graduate school

15 Patents and R&D expenditure: an application of the Poisson probability

distribution

16 Dollar/euro exchange rates: are they stationary?

17 Closing daily prices of IBM stock: are they a random walk?

18 Is the regression of consumption expenditure on disposable personal income

spurious?

19 Are 3-month and 6-month US Treasury Bills cointegrated?

20 ARCH model of dollar/euro exchange rate

21 GARCH model of dollar/euro exchange rate

22 An ARMA model of IBM daily closing prices

23 Vector error correction model (VEC) of 3-month and 6-month Treasury Bill rates

24 Testing for Granger causality between consumption expenditure and per capita

disposable income

25 Charitable donations using panel data

26 Duration analysis of recidivism

27 Instrumental variable estimation of schooling and socio-economic variables

28 The simultaneity between consumption expenditure and income

The book is divided into four parts:

Part I discusses the classical linear regression model, which is the workhorse of

econometrics. This model is based on restrictive assumptions. The three chapters

cover the linear regression model, functional forms of regression models, and qualita-

tive (dummy) variables regression models.
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Part II looks critically at the assumptions of the classical linear regression model

and examines the ways these assumptions can be modified and with what effect. Spe-

cifically, we discuss the topics of multicollinearity, heteroscedasticity, autocorrelation,

and model specification errors.

Part III discusses important topics in cross-section econometrics. These chapters

discuss and illustrate several cross-sectional topics that are, in fact, not usually dis-

cussed in depth in most undergraduate textbooks. These are logit and probit models,

multinomial regression models, ordinal regression models, censored and truncated

regression models, and Poisson and negative binomial distribution models dealing

with count data.

The reason for discussing these models is that they are increasingly being used in

the fields of economics, education, psychology, political science, and marketing,

largely due to the availability of extensive cross-sectional data involving thousands of

observations and also because user-friendly software programs are now readily avail-

able to deal with not only vast quantities of data but also to deal with some of these

techniques, which are mathematically involved.

Part IV deals primarily with topics in time series econometrics, such as stationary

and nonstationary time series, cointegration and error-correction mechanisms, asset

price volatility (the ARCH and GARCH models), and economic forecasting with re-

gression (ARIMA and VAR models).

It also discusses three advanced topics. These are panel data regression models

(that is, models that deal with repeated cross-sectional data over time; in particular we

discuss the fixed effects and random effects models), survival or duration analysis of

phenomena such as the duration of unemployment and survival time of cancer pa-

tients, and the method of instrumental variables (IV), which is used to deal with sto-

chastic explanatory variables that may be correlated with the error term, which

renders OLS estimators inconsistent.

In sum, as the title suggests, Econometrics by Example discusses the major themes

in econometrics with detailed worked examples that show how the subject works in

practice. With some basic theory and familiarity with econometric software, students

will find that “learning by doing” is the best way to learn econometrics. The prerequi-

sites are minimal. An exposure to the two-variable linear regression model, a begin-

ning course in statistics, and facility in algebraic manipulations will be adequate to

follow the material in the book. EBE does not use any matrix algebra or advanced

calculus.

EBE makes heavy use of the Stata and Eviews statistical packages. The outputs ob-

tained from these packages are reproduced in the book so the reader can see clearly the

results in a compact way. Wherever necessary, graphs are produced to give a visual feel

for the phenomenon under study. Most of the chapters include several exercises that

the reader may want to attempt to learn more about the various techniques discussed.

Although the bulk of the book is free of complicated mathematical derivations, in a

few cases some advanced material is put in the appendices.

Companion website

The data used in this textbook are posted on the companion website and notes within

each chapter direct the reader to this at the relevant points. Students are encouraged

to use these data in several end-of-chapter exercises to practice applying what they
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have learned to different scenarios. The instructor may also want to use these data for

classroom assignments to develop and estimate alternative econometric models. For

the instructor, solutions to these end-of-chapter exercises are posted on the compan-

ion website in the password protected lecturer zone. Here, (s)he will also find a collec-

tion of PowerPoint slides which correspond to each chapter for use in teaching.
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A personal message from the author

Dear student,

Firstly, thank you for buying Econometrics by Example. This book has been written

and revised in response to feedback from lecturers around the world, so it has been de-

signed with your learning needs in mind. Whatever your course, it provides a practical

and accessible introduction to econometrics that will equip you with the tools to

tackle econometric problems and to work confidently with data sets.

Secondly, I hope you enjoy studying econometrics using this book. It is still in fact a

comparatively young field, and it may surprise you that until the late nineteenth and

early twentieth century the statistical analysis of economic data for the purpose of

measuring and testing economic theories was met with much skepticism. It was not

until the 1950s that econometrics was considered a sub-field of economics, and then

only a handful of economics departments offered it as a specialized field of study. In

the 1960s, a few econometrics textbooks appeared on the market, and since then the

subject has made rapid strides.

Nowadays, econometrics is no longer confined to economics departments. Econo-

metric techniques are used in a variety of fields such as finance, law, political science,

international relations, sociology, psychology, medicine and agricultural sciences.

Students who acquire a thorough grounding in econometrics therefore have a head

start in making careers in these areas. Major corporations, banks, brokerage houses,

governments at all levels, and international organizations like the IMF and the World

Bank, employ a vast number of people who can use econometrics to estimate demand

functions and cost functions, and to conduct economic forecasting of key national and

international economic variables. There is also a great demand for econometricians by

colleges and universities all over the world.

What is more, there are now several textbooks that discuss econometrics from very

elementary to very advanced levels to help you along the way. I have contributed to

this growth industry with two introductory and intermediate level texts and now I

have written this third book based on a clear need for a new approach. Having taught

econometrics for several years at both undergraduate and graduate levels in Australia,

India, Singapore, USA and the UK, I came to realize that there was clearly a need for a

book which explains this often complex discipline in straightforward, practical terms

by considering several interesting examples, such as charitable giving, fashion sales

and exchange rates, in depth. This need has now been met with Econometrics by

Example.

What has made econometrics even more exciting to study these days is the avail-

ability of user-friendly software packages. Although there are several software pack-

ages, in this book I primarily use Eviews and Stata, as they are widely available and easy



to get started with. Student versions of these packages are available at reasonable cost

and I have presented outputs from them throughout the book so you can see the re-

sults of the analysis very clearly. I have also made this text easy to navigate by dividing

it into four parts, which are described in detail in the Preface. Each chapter follows a

similar structure, ending with a summary and conclusions section to draw together

the main points in an easy-to-remember format. I have put the data sets used in the

examples in the book up on the companion website, which you can find at

www.palgrave.com/economics/gujarati.

I hope you enjoy my hands-on approach to learning and that this textbook will be a

valuable companion to your further education in economics and related disciplines

and your future career. I would welcome any feedback on the text; please contact me

via my email address on the companion website.
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1
The linear regression model: an overview

As noted in the Preface, one of the important tools of econometrics is the linear re-

gression model (LRM). In this chapter we discuss the general nature of the LRM and

provide the background that will be used to illustrate the various examples discussed

in this book. We do not provide proofs, for they can be found in many textbooks.1

1.1 The linear regression model

The LRM in its general form may be written as:

Y B B X B X B X ui i i k ki i� � � � � �1 2 2 3 3 � (1.1)

The variable Y is known as the dependent variable, or regressand, and the X variables

are known as the explanatory variables, predictors, covariates, or regressors, and u is

known as a random, or stochastic, error term. The subscript i denotes the ith observa-

tion. For ease of exposition, we will write Eq. (1.1) as:

Yi = BX + ui (1.2)

where BX is a short form for B B X B X B Xi i k ki1 2 2 3 3� � � �� .

Equation (1.1), or its short form (1.2), is known as the population or true model. It

consists of two components: (1) a deterministic component, BX, and (2) a

nonsystematic, or random component, ui. As shown below, BX can be interpreted as

the conditional mean of Yi, E Yi( | )X , conditional upon the given X values.2 Therefore,

Eq. (1.2) states that an individual Yi value is equal to the mean value of the population

of which he or she is a member plus or minus a random term. The concept of popula-

tion is general and refers to a well-defined entity (people, firms, cities, states, coun-

tries, and so on) that is the focus of a statistical or econometric analysis.

For example, if Y represents family expenditure on food and X represents family

income, Eq. (1.2) states that the food expenditure of an individual family is equal to the

mean food expenditure of all the families with the same level of income, plus or minus

2

1 See, for example, Damodar N. Gujarati and Dawn C. Porter, Basic Econometrics, 5th edn, McGraw-Hill,

New York, 2009 (henceforward, Gujarati/Porter text); Jeffrey M. Wooldridge, Introductory Econometrics: A

Modern Approach, 4th edn, South-Western, USA, 2009; James H. Stock and Mark W. Watson, Introduction

to Econometrics, 2nd edn, Pearson, Boston, 2007; and R. Carter Hill, William E. Griffiths and Guay C. Lim,

Principles of Econometrics, 3rd edn, John Wiley & Sons, New York, 2008.

2 Recall from introductory statistics that the unconditional expected, or mean, value of Yi is denoted as

E(Y), but the conditional mean, conditional on given X, is denoted as E Y X( | ).



a random component that may vary from individual to individual and that may depend

on several factors.

In Eq. (1.1) B1 is known as the intercept and B2 to Bk are known as the slope coeffi-

cients. Collectively, they are called regression coefficients or regression parameters.

In regression analysis our primary objective is to explain the mean, or average, behav-

ior of Y in relation to the regressors, that is, how mean Y responds to changes in the

values of the X variables. An individual Y value will hover around its mean value.

It should be emphasized that the causal relationship between Y and the Xs, if any,

should be based on the relevant theory.

Each slope coefficient measures the (partial) rate of change in the mean value of Y

for a unit change in the value of a regressor, holding the values of all other regressors

constant, hence the adjective partial. How many regressors are included in the model

depends on the nature of the problem and will vary from problem to problem.

The error term ui is a catchall for all those variables that cannot be introduced in the

model for a variety of reasons. However, the average influence of these variables on the

regressand is assumed to be negligible.

The nature of the Y variable

It is generally assumed that Y is a random variable. It can be measured on four different

scales: ratio scale, interval scale, ordinal scale, and nominal scale.

� Ratio scale: A ratio scale variable has three properties: (1) ratio of two variables, (2)

distance between two variables, and (3) ordering of variables. On a ratio scale if, say,

Y takes two values, Y1 and Y2, the ratio Y1/Y2 and the distance (Y2 – Y1) are meaning-

ful quantities, as are comparisons or ordering such as Y Y2 1� or Y Y2 1� . Most eco-

nomic variables belong to this category. Thus we can talk about whether GDP is

greater this year than the last year, or whether the ratio of GDP this year to the GDP

last year is greater than or less than one.

� Interval scale: Interval scale variables do not satisfy the first property of ratio scale

variables. For example, the distance between two time periods, say, 2007 and 2000

(2007 – 2000) is meaningful, but not the ratio 2007/2000.

� Ordinal scale: Variables on this scale satisfy the ordering property of the ratio scale,

but not the other two properties. For examples, grading systems, such as A, B, C, or

income classification, such as low income, middle income, and high income, are or-

dinal scale variables, but quantities such as grade A divided by grade B are not

meaningful.

� Nominal scale: Variables in this category do not have any of the features of the ratio

scale variables. Variables such as gender, marital status, and religion are nominal

scale variables. Such variables are often called dummy or categorical variables.

They are often “quantified” as 1 or 0, 1 indicating the presence of an attribute and 0

indicating its absence. Thus, we can “quantify” gender as male = 1 and female = 0, or

vice versa.

Although most economic variables are measured on a ratio or interval scale, there

are situations where ordinal scale and nominal scale variables need to be considered.

That requires specialized econometric techniques that go beyond the standard LRM.

We will have several examples in Part III of this book that will illustrate some of the

specialized techniques.
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The nature of X variables or regressors

The regressors can also be measured on any one of the scales we have just discussed,

although in many applications the regressors are measured on ratio or interval scales.

In the standard, or classical linear regression model (CLRM), which we will discuss

shortly, it is assumed that the regressors are nonrandom, in the sense that their values

are fixed in repeated sampling. As a result, our regression analysis is conditional, that

is, conditional on the given values of the regressors.

We can allow the regressors to be random like the Y variable, but in that case care

needs to be exercised in the interpretation of the results. We will illustrate this point in

Chapter 7 and consider it in some depth in Chapter 19.

The nature of the stochastic error term, u

The stochastic error term is a catchall that includes all those variables that cannot be

readily quantified. It may represent variables that cannot be included in the model for

lack of data availability, or errors of measurement in the data, or intrinsic randomness

in human behavior. Whatever the source of the random term u, it is assumed that the

average effect of the error term on the regressand is marginal at best. However, we will

have more to say about this shortly.

The nature of regression coefficients, the Bs

In the CLRM it is assumed that the regression coefficients are some fixed numbers and

not random, even though we do not know their actual values. It is the objective of re-

gression analysis to estimate their values on the basis of sample data. A branch of sta-

tistics known as Bayesian statistics treats the regression coefficients as random. In this

book we will not pursue the Bayesian approach to the linear regression models.3

The meaning of linear regression

For our purpose the term “linear” in the linear regression model refers to linearity in

the regression coefficients, the Bs, and not linearity in the Y and X variables. For in-

stance, the Y and X variables can be logarithmic (e.g. ln X2), or reciprocal (1/X3) or

raised to a power (e.g. X2
3 ), where ln stands for natural logarithm, that is, logarithm to

the base e.4

Linearity in the B coefficients means that they are not raised to any power (e.g. B2
2 )

or are divided by other coefficients (e.g. B B2 3/ ) or transformed, such as ln B4. There

are occasions where we may have to consider regression models that are not linear in

the regression coefficients.5

4 The linear regression model

3 Consult, for instance, Gary Koop, Bayesian Econometrics, John Wiley & Sons, West Sussex, England,

2003.

4 By contrast, logarithm to base 10 is called common log. But there is a fixed relationship between the

common and natural logs, which is: ln . loge X X� 2 3026 10 .

5 Since this is a specialized topic requiring advanced mathematics, we will not cover it in this book. But

for an accessible discussion, see Gujarati/Porter, op cit., Chapter 14.



1.2 The nature and sources of data

To conduct regression analysis, we need data. There are generally three types of data

that are available for analysis: (1) time series, (2) cross-sectional, and (3) pooled or

panel (a special kind of pooled data).

Time series data
A time series is a set of observations that a variable takes at different times, such as

daily (e.g. stock prices, weather reports), weekly (e.g. money supply), monthly (e.g. the

unemployment rate, the consumer price index CPI), quarterly (e.g. GDP), annually

(e.g. government budgets), quinquenially or every five years (e.g. the census of manu-

factures), or decennially or every ten years (e.g. the census of population). Sometimes

data are collected both quarterly and annually (e.g. GDP). So-called high-frequency

data are collected over an extremely short period of time. In flash trading in stock and

foreign exchange markets such high-frequency data have now become common.

Since successive observations in time series data may be correlated, they pose spe-

cial problems for regressions involving time series data, particularly, the problem of

autocorrelation. In Chapter 6 we will illustrate this problem with appropriate

examples.

Time series data pose another problem, namely, that they may not be stationary.

Loosely speaking, a time series data set is stationary if its mean and variance do not

vary systematically over time. In Chapter 13 we examine the nature of stationary and

nonstationary time series and show the special estimation problems created by the

latter.

If we are dealing with time series data, we will denote the observation subscript by t

(e.g. Yt, Xt).

Cross-sectional data
Cross-sectional data are data on one or more variables collected at the same point in

time. Examples are the census of population conducted by the Census Bureau, opinion

polls conducted by various polling organizations, and temperature at a given time in

several places, to name a few.

Like time series data, cross-section data have their particular problems, particularly

the problem of heterogeneity. For example, if you collect data on wages in several

firms in a given industry at the same point in time, heterogeneity arises because the

data may contain small, medium, and large size firms with their individual characteris-

tics. We show in Chapter 5 how the size or scale effect of heterogeneous units can be

taken into account.

Cross-sectional data will be denoted by the subscript i (e.g. Yi, Xi).

Panel, longitudinal or micro-panel data
Panel data combines features of both cross-section and time series data. For example,

to estimate a production function we may have data on several firms (the cross-sec-

tional aspect) over a period of time (the time series aspect). Panel data poses several

challenges for regression analysis. In Chapter 17 we present examples of panel data

regression models.

Panel observations will be denoted by the double subscript it (e.g. Yit, Xit).

The linear regression model: an overview 5
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Sources of data

The success of any regression analysis depends on the availability of data. Data may be

collected by a governmental agency (e.g. the Department of Treasury), an interna-

tional agency (e.g. the International Monetary Fund (IMF) or the World Bank), a pri-

vate organization (e.g. the Standard & Poor’s Corporation), or individuals or private

corporations.

These days the most potent source of data is the Internet. All one has to do is

“Google” a topic and it is amazing how many sources one finds.

The quality of data
The fact that we can find data in several places does not mean it is good data. One must

check carefully the quality of the agency that collects the data, for very often the data

contain errors of measurement, errors of omission or errors of rounding and so on.

Sometime the data are available only at a highly aggregated level, which may not tell us

much about the individual entities included in the aggregate. The researchers should

always keep in mind that the results of research are only as good as the quality of the

data.

Unfortunately, an individual researcher does not have the luxury of collecting data

anew and has to depend on secondary sources. But every effort should be made to

obtain reliable data.

1.3 Estimation of the linear regression model

Having obtained the data, the important question is: how do we estimate the LRM

given in Eq. (1.1)? Suppose we want to estimate a wage function of a group of workers.

To explain the hourly wage rate (Y), we may have data on variables such as gender, eth-

nicity, union status, education, work experience, and many others, which are the X

regressors. Further, suppose that we have a random sample of 1,000 workers. How

then do we estimate Eq. (1.1)? The answer follows.

The method of ordinary least squares (OLS)

A commonly used method to estimate the regression coefficients is the method of or-

dinary least squares (OLS).6 To explain this method, we rewrite Eq. (1.1) as follows:

u Y B B X B X B X

Y

i i i i k ki

i

� � � � � �

� �

( )1 2 2 3 3 �

BX
(1.3)

Equation (1.3) states that the error term is the difference between the actual Y value

and the Y value obtained from the regression model.

One way to obtain estimates of the B coefficients would be to make the sum of the

error term ui (=�ui ) as small as possible, ideally zero. For theoretical and practical rea-

sons, the method of OLS does not minimize the sum of the error term, but minimizes

the sum of the squared error term as follows:

6 The linear regression model

6 OLS is a special case of the generalized least squares method (GLS). Even then OLS has many

interesting properties, as discussed below. An alternative to OLS that is of general applicability is the

method of maximum likelihood (ML), which we discuss briefly in the Appendix to this chapter.



u Y B B X B X B Xi i i i k ki
2

1 2 2 3 3
2	 	� � � � � �( )� (1.4)

where the sum is taken over all observations. We call �ui
2 the error sum of squares

(ESS).

Now in Eq. (1.4) we know the sample values of Yi and the Xs, but we do not know the

values of the B coefficients. Therefore, to minimize the error sum of squares (ESS) we

have to find those values of the B coefficients that will make ESS as small as possible.

Obviously, ESS is now a function of the B coefficients.

The actual minimization of ESS involves calculus techniques. We take the (partial)

derivative of ESS with respect to each B coefficient, equate the resulting equations to

zero, and solve these equations simultaneously to obtain the estimates of the k regres-

sion coefficients.7 Since we have k regression coefficients, we will have to solve k equa-

tions simultaneously. We need not solve these equations here, for software packages

do that routinely.8

We will denote the estimated B coefficients with a lower case b, and therefore the

estimating regression can be written as:

Y b b X b X b X ei i i k ki i� � � � � �1 2 2 3 3 � (1.5)

which may be called the sample regression model, the counterpart of the population

model given in Eq. (1.1).

Letting

�Y b b X b X b Xi i i k ki� � � � � �1 2 2 3 3 � bX (1.6)

we can write Eq. (1.5) as

Y Y e ei i i i� � � �� bX (1.7)

where �Yi is an estimator of BX. Just as BX (i.e. E Y X( | )) can be interpreted as the popu-

lation regression function (PRF), we can interpret bX as the sample regression func-

tion (SRF).

We call the b coefficients the estimators of the B coefficients and ei, called the re-

sidual, an estimator of the error term ui. An estimator is a formula or rule that tells us

how we go about finding the values of the regression parameters. A numerical value

taken by an estimator in a sample is known as an estimate. Notice carefully that the es-

timators, the bs, are random variables, for their values will change from sample to

sample. On the other hand, the (population) regression coefficients or parameters, the

Bs, are fixed numbers, although we do not what they are. On the basis of the sample we

try to obtain the best guesses of them.

The distinction between population and sample regression function is important,

for in most applications we may not be able to study the whole population for a variety

of reasons, including cost considerations. It is remarkable that in Presidential elections

in the USA, polls based on a random sample of, say, 1,000 people often come close to

predicting the actual votes in the elections.

The linear regression model: an overview 7
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several variables, the first-order condition is to equate the derivatives of the function with respect to each

variable equal to zero.

8 Mathematically inclined readers may consult Gujarati/Porter, op cit., Chapter 2.



In regression analysis our objective is to draw inferences about the population re-

gression function on the basis of the sample regression function, for in reality we rarely

observe the population regression function; we only guess what it might be. This is im-

portant because our ultimate objective is to find out what the true values of the Bs may

be. For this we need a bit more theory, which is provided by the classical linear regres-

sion model (CLRM), which we now discuss.

1.4 The classical linear regression model (CLRM)

The CLRM makes the following assumptions:

A-1: The regression model is linear in the parameters as in Eq. (1.1); it may or may not

be linear in the variables Y and the Xs.

A-2: The regressors are assumed to be fixed or nonstochastic in the sense that their

values are fixed in repeated sampling. This assumption may not be appropriate for all

economic data, but as we will show in Chapters 7 and 19, if X and u are independently

distributed the results based on the classical assumption discussed below hold true

provided our analysis is conditional on the particular X values drawn in the sample.

However, if X and u are uncorrelated, the classical results hold true asymptotically (i.e.

in large samples.)9

A-3: Given the values of the X variables, the expected, or mean, value of the error term

is zero. That is,10

E ui( | )X � 0 (1.8)

where, for brevity of expression, X (the bold X) stands for all X variables in the model.

In words, the conditional expectation of the error term, given the values of the X vari-

ables, is zero. Since the error term represents the influence of factors that may be es-

sentially random, it makes sense to assume that their mean or average value is zero.

As a result of this critical assumption, we can write (1.2) as:

E Y E ui i( | ) ( | )X BX X

BX

� �

�
(1.9)

which can be interpreted as the model for mean or average value of Yi conditional on

the X values. This is the population (mean) regression function (PRF) mentioned

earlier. In regression analysis our main objective is to estimate this function. If there is

only one X variable, you can visualize it as the (population) regression line. If there is

more than one X variable, you will have to imagine it to be a curve in a multi-dimen-

sional graph. The estimated PRF, the sample counterpart of Eq. (1.9), is denoted by
�Y bxi � . That is, �Y bxi � is an estimator of E Y Xi( | ).

A-4: The variance of each ui, given the values of X, is constant, or homoscedastic

(homo means equal and scedastic means variance). That is,

var( | )ui X � 
2 (1.10)

8 The linear regression model

9 Note that independence implies no correlation, but no correlation does not necessarily imply

independence.

10 The vertical bar after ui is to remind us that the analysis is conditional on the given values of X.



Note: There is no subscript on 
2 .

A-5: There is no correlation between two error terms. That is, there is no

autocorrelation. Symbolically,

cov( , | )u u i ji j X � �0 (1.11)

where Cov stands for covariance and i and j are two different error terms. Of course, if i

= j, Eq. (1.11) will give the variance of ui given in Eq. (1.10).

A-6: There are no perfect linear relationships among the X variables. This is the as-

sumption of no multicollinearity. For example, relationships like X X X5 3 42 4� � are

ruled out.

A-7: The regression model is correctly specified. Alternatively, there is no specifica-

tion bias or specification error in the model used in empirical analysis. It is implicitly

assumed that the number of observations, n, is greater than the number of parameters

estimated.

Although it is not a part of the CLRM, it is assumed that the error term follows the

normal distribution with zero mean and (constant) variance 
2 . Symbolically,

A-8: u Ni ~ ( , )0 2
 (1.12)

On the basis of Assumptions A-1 to A-7, it can be shown that the method of ordi-

nary least squares (OLS), the method most popularly used in practice, provides esti-

mators of the parameters of the PRF that have several desirable statistical properties,

such as:

1 The estimators are linear, that is, they are linear functions of the dependent

variable Y. Linear estimators are easy to understand and deal with compared to

nonlinear estimators.

2 The estimators are unbiased, that is, in repeated applications of the method, on

average, the estimators are equal to their true values.

3 In the class of linear unbiased estimators, OLS estimators have minimum vari-

ance. As a result, the true parameter values can be estimated with least possible

uncertainty; an unbiased estimator with the least variance is called an efficient

estimator.

In short, under the assumed conditions, OLS estimators are BLUE: best linear un-

biased estimators. This is the essence of the well-known Gauss–Markov theorem,

which provides a theoretical justification for the method of least squares.

With the added Assumption A-8, it can be shown that the OLS estimators are them-

selves normally distributed. As a result, we can draw inferences about the true values of

the population regression coefficients and test statistical hypotheses. With the added as-

sumption of normality, the OLS estimators are best unbiased estimators (BUE) in the

entire class of unbiased estimators, whether linear or not. With normality assumption,

CLRM is known as the normal classical linear regression model (NCLRM).

Before proceeding further, several questions can be raised. How realistic are these

assumptions? What happens if one or more of these assumptions are not satisfied? In

that case, are there alternative estimators? Why do we confine to linear estimators

only? All these questions will be answered as we move forward (see Part II). But it may
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be added that in the beginning of any field of enquiry we need some building blocks.

The CLRM provides one such building block.

1.5 Variances and standard errors of OLS estimators

As noted before, the OLS estimators, the bs, are random variables, for their values will

vary from sample to sample. Therefore we need a measure of their variability. In statis-

tics the variability of a random variable is measured by its variance 
2 , or its square

root, the standard deviation 
. In the regression context the standard deviation of an

estimator is called the standard error, but conceptually it is similar to standard devia-

tion. For the LRM, an estimate of the variance of the error term ui, 
2 , is obtained as

�
2
2

�
�

�e

n k

i (1.13)

that is, the residual sum of squares (RSS) divided by (n – k), which is called the degrees

of freedom (df), n being the sample size and k being the number of regression parame-

ters estimated, an intercept and (k – 1) slope coefficients. �
 is called the standard error

of the regression (SER) or root mean square. It is simply the standard deviation of the

Y values about the estimated regression line and is often used as a summary measure of

“goodness of fit” of the estimated regression line (see Sec. 1.6). Note that a “hat” or

caret over a parameter denotes an estimator of that parameter.

It is important to bear in mind that the standard deviation of Y values, denoted by

SY , is expected to be greater than SER, unless the regression model does not explain

much variation in the Y values.11 If that is the case, there is no point in doing regression

analysis, for in that case the X regressors have no impact on Y. Then the best estimate

of Y is simply its mean value, Y . Of course we use a regression model in the belief that

the X variables included in the model will help us to better explain the behavior of Y

that Y alone cannot.

Given the assumptions of the CLRM, we can easily derive the variances and stan-

dard errors of the b coefficients, but we will not present the actual formulas to com-

pute them because statistical packages produce them easily, as we will show with an

example.

Probability distributions of OLS estimators

If we invoke Assumption A-8, u Ni ~ ( , )0 2
 , it can be shown that each OLS estimator

of regression coefficients is itself normally distributed with mean value equal to its

corresponding population value and variance that involves 
2 and the values of the X

variables. In practice, 
2 is replaced by its estimator �
2 given in Eq. (1.13). In practice,

therefore, we use the t probability distribution rather than the normal distribution

for statistical inference (i.e. hypothesis testing). But remember that as the sample size

increases, the t distribution approaches the normal distribution. The knowledge that

the OLS estimators are normally distributed is valuable in establishing confidence in-

tervals and drawing inferences about the true values of the parameters. How this is

done will be shown shortly.

10 The linear regression model

11 The sample variance of Y is defined as: S Y Y nY i
2 2 1� � ��( ) /( ) whereY is the sample mean. The square

root of the variance is the standard deviation of Y, SY .



1.6 Testing hypotheses about the true or population
regression coefficients

Suppose we want to test the hypothesis that the (population) regression coefficient Bk

= 0. To test this hypothesis, we use the t test of statistics,12 which is:

t
b

se b

k

k

�
( )

where se(bk) is the standard error of bk. This t value has (n – k) degrees of freedom (df);

recall that associated with a t statistic is its degrees of freedom. In the k variable regres-

sion, df is equal to the number of observations minus the number of coefficients

estimated.

Once the t statistic is computed, we can look up the t table to find out the probabil-

ity of obtaining such a t value or greater. If the probability of obtaining the computed t

value is small, say 5% or less, we can reject the null hypothesis that Bk = 0. In that case

we say that the estimated t value is statistically significant, that is, significantly different

from zero.

The commonly chosen probability values are 10%, 5%, and 1%. These values are

known as the levels of significance (usually denoted by the Greek letter � (alpha) and

also known as a Type I error), hence the name t tests of significance.

We need not do this labor manually as statistical packages provide the necessary

output. These software packages not only give the estimated t values, but also their p

(probability) values, which are the exact level of significance of the t values. If a p

value is computed, there is no need to use arbitrarily chosen �values. In practice, a low

p value suggests that the estimated coefficient is statistically significant.13 This would

suggest that the particular variable under consideration has a statistically significant

impact on the regressand, holding all other regressor values constant.

Some software packages, such as Excel and Stata, also compute confidence inter-

vals for individual regression coefficients – usually a 95% confidence interval (CI).

Such intervals provide a range of values that has a 95% chance of including the true

population value. 95% (or similar measure) is called the confidence coefficient (CC),

which is simply one minus the value of the level of significance, �, times 100 – that is,

CC = 100(1 – �).

The ( )1�� confidence interval for any population coefficient Bk is established as

follows:

Pr [ ( )] ( )/b t se bk k � �� �2 1 (1.14)

where Pr stands for probability and where t�/2 is the value of the t statistic obtained

from the t distribution (table) for � /2 level of significance with appropriate degrees of

freedom, and se(bk) is the standard error of bk. In other words, we subtract or add t�/2

times the standard error of bk to bk to obtain the (1 – �) confidence interval for true Bk.
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2 is known, we can use the standard normal distribution to test the hypothesis. Since we

estimate the true error variance by its estimator, �
2, statistical theory shows that we should use the t

distribution.

13 Some researchers choose � values and reject the null hypothesis if the p value is lower than the chosen

� value.



[ ( )]/b t se bk k� � 2 is called the lower limit and [ ( )]/b t se bk k� � 2 is called the upper limit

of the confidence interval. This is called the two-sided confidence interval.

Confidence intervals thus obtained need to be interpreted carefully. In particular

note the following:

1 The interval in Eq. (1.14) does not say that the probability of the true Bk lying be-

tween the given limits is ( )1�� . Although we do not know what the actual value of

Bk is, it is assumed to be some fixed number.

2 The interval in Eq. (1.14) is a random interval – that is, it will vary from sample to

sample because it is based on bk, which is random.

3 Since the confidence interval is random, a probability statement such as Eq. (1.14)

should be understood in the long-run sense – that is in repeated sampling: if, in re-

peated sampling, confidence intervals like Eq. (1.14) are constructed a large

number of times on the ( )1�� probability basis, then in the long run, on average,

such intervals will enclose in ( )1�� of the cases the true Bk. Any single interval

based on a single sample may or may not contain the true Bk.

4 As noted, the interval in Eq. (1.14) is random. But once we have a specific sample

and once we obtain a specific numerical value of Bk , the interval based on this

value is not random but is fixed. So we cannot say that the probability is ( )1�� that

the given fixed interval includes the true parameter. In this case Bk either lies in

this interval or it does not. Therefore the probability is 1 or 0.

We will illustrate all this with a numerical example discussed in Section 1.8.

Suppose we want to test the hypothesis that all the slope coefficients in Eq. (1.1) are

simultaneously equal to zero. This is to say that all regressors in the model have no

impact on the dependent variable. In short, the model is not helpful to explain the be-

havior of the regressand. This is known in the literature as the overall significance of

the regression. This hypothesis is tested by the F test of statistics. Verbally the F statis-

tic is defined as:

F �
ESS/ df

RSS/ df
(1.15)

where ESS is the part of the variation in the dependent variable Y explained by the

model and RSS is the part of the variation in Y not explained by the model. The sum of

these is the total variation in Y, call the total sum of squares (TSS).

As Eq. (1.15) shows, the F statistic has two sets of degrees of freedom, one for the

numerator and one for the denominator. The denominator df is always (n – k) – the

number of observations minus the number of parameters estimated, including the in-

tercept – and the numerator df is always (k – 1) – that is, the total number of regressors

in the model excluding the constant term, which is the total number of slope

coefficients estimated.

The computed F value can be tested for its significance by comparing it with the F

value from the F tables. If the computed F value is greater than its critical or bench-

mark F value at the chosen level of �, we can reject the null hypothesis and conclude

that at least one regressor is statistically significant. Like the p value of the t statistic,

most software packages also present the p value of the F statistic. All this information

can be gleaned from the Analysis of Variance (AOV) table that usually accompanies

regression output; an example of this is presented shortly.

12 The linear regression model



It is very important to note that the use of the t and F tests is explicitly based on the

assumption that the error term, ui, is normally distributed, as in Assumption A-8. If

this assumption is not tenable, the t and F testing procedure is invalid in small samples,

although they can still be used if the sample is sufficiently large (technically infinite), a

point to which we will return in Chapter 7 on specification errors.

1.7 R2: a measure of goodness of fit of the estimated
regression

The coefficient of determination, denoted by R2, is an overall measure of goodness of

fit of the estimated regression line (or plane, if more than one regressor is involved),

that is, it gives the proportion or percentage of the total variation in the dependent

variable Y (TSS) that is explained by all the regressors. To see how R2 is computed, let

us define:

Total Sum of Squares (TSS) = � �y Y Yi i
2 2� �( )

Explained Sum of Squares (ESS) = �( � )Y Yi � 2

Residual Sum of Squares (RSS) = �ei
2

Now it can be shown that

� � �y y ei i i
2 2 2� �� (1.16)14

This equation states that the total variation of the actual Y values about their sample

mean (TSS) is equal to sum of the total variation of the estimated Y values about their

mean value (which is the same as Y ) and the sum of residuals squared. In words,

TSS = ESS + RSS (1.17)

Now we define R2 as:

R2 �
ESS

TSS
(1.18)

Thus defined, the coefficient of determination is simply the proportion or percentage

of the total variation in Y explained by the regression model.

R2 therefore lies between 0 and 1, provided there is an intercept term in the model.

The closer it is to 1, the better is the fit, and the closer it is to 0, the worse is the fit. Re-

member that in regression analysis one of the objectives is to explain as much variation

in the dependent variable as possible with the help of the regressors.

Alternatively, R2 can also be defined as:

R2 1� �
RSS

TSS
(1.19)15
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��y ei i � 0 as a result of OLS estimation.

15 TSS = ESS + RSS. Therefore, 1=ESS/TSS + RSS/TSS. That is, 1 = R2 – RSS/TSS. Rearranging this, we

get Eq. (1.19).



One disadvantage of R2 is that it is an increasing function of the number of

regressors. That is, if you add a variable to model, the R2 values increases. So some-

times researchers pay the game of “maximizing” R2, meaning the higher the R2, the

better the model.

To avoid this temptation, it is suggested that we use an R2 measure that explicitly

takes into account the number of regressors included in the model. Such an R2 is called

an adjusted R2, denoted as R 2 (R-bar squared), and is computed from the (unad-

justed) R2 as follows:

R R
n

n k
2 21 1

1
� � �

�
�

( ) (1.20)

The term “adjusted” means adjusted for the degrees of freedom, which depend on

the number of regressors (k) in the model.

Notice two features of R 2 :

1 If k > 1, R R2 2� , that is, as the number of regressors in the model increases, the

adjusted R2 becomes increasingly smaller than the unadjusted R2. Thus, R 2 im-

poses a “penalty” for adding more regressors.

2 The unadjusted R2 is always positive, but the adjusted R2 can sometimes be

negative.

Adjusted R2 is often used to compare two or more regression models that have the

same dependent variable. Of course, there are other measures of comparing regres-

sion models, which we will discuss in Chapter 7.

Having covered the basic theory underlying the CLRM, we now provide a concrete

example illustrating the various points discussed above. This example is a prototype of

multiple regression models.

1.8 An illustrative example: the determinants of hourly wages

The Current Population Survey (CPS), undertaken by the U.S. Census Bureau, periodi-

cally conducts a variety of surveys on a variety of topics. In this example we look at a

cross-section of 1,289 persons interviewed in March 1995 to study the factors that de-

termine hourly wage (in dollars) in this sample.16 Keep in mind that these 1,289 obser-

vations are a sample from a much bigger population

The variables used in the analysis are defined as follows:

Wage: Hourly wage in dollars, which is the dependent variable.

The explanatory variables, or regressors, are as follows:

Female: Gender, coded 1 for female, 0 for male

Nonwhite: Race, coded 1 for nonwhite workers, 0 for white workers

Union: Union status, coded 1 if in a union job, 0 otherwise

Education: Education (in years)

14 The linear regression model

16 The data used here are from the Current Population Survey which is obtained from the US Census

Bureau. It also appears in Paul A. Ruud, An Introduction to Classical Econometric Theory, Oxford University

Press, New York, 2000.



Exper: Potential work experience (in years), defined as age minus years of schooling

minus 6. (It is assumed that schooling starts at age 6).

Although many other regressors could be added to the model, for now we will con-

tinue with these variables to illustrate a prototype multiple regression model.

Note that wage, education, and work experience are ratio scale variables and

female, nonwhite, and union are nominal scale variables, which are coded as dummy

variables. Also note that the data here are cross-section data. The data are given in

Table 1.1, which can be found on the companion website.

In this book we will use the Eviews and Stata software packages to estimate the re-

gression models. Although for a given data set they give similar results, there are some

variations in the manner in which they present them. To familiarize the reader with

these packages, in this chapter we will present results based on both these packages. In

later chapters we may use one or both of these packages, but mostly Eviews because of

its easy accessibility.17

Using Eviews 6, we obtained the results in Table 1.2.

The format of Eviews is highly standardized. The first part of the table shows the

name of the dependent variable, the estimation method (least squares), the number of

observations, and the sample range. Sometimes we may not use all the sample obser-

vations, and save some observations, called holdover observations, for forecasting

purposes.

The second part of the table gives the names of the explanatory variables, their esti-

mated coefficients, the standard errors of the coefficients, the t statistic of each coeffi-
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Dependent Variable: WAGE
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –7.183338 1.015788 –7.071691 0.0000

FEMALE –3.074875 0.364616 –8.433184 0.0000

NONWHITE –1.565313 0.509188 –3.074139 0.0022

UNION 1.095976 0.506078 2.165626 0.0305

EDUCATION 1.370301 0.065904 20.79231 0.0000

EXPER 0.166607 0.016048 10.38205 0.0000

R-squared 0.323339 Mean dependent var 12.36585
Adjusted R-squared 0.320702 S.D. dependent var 7.896350
S.E. of regression 6.508137 Akaike info criterion 6.588627
Sum squared resid 54342.54 Schwarz criterion 6.612653
Log likelihood –4240.370 Durbin–Watson stat 1.897513
F-statistic 122.6149 Prob(F-statistic) 0.000000

Table 1.2 Wage regression.

17 Excel can also estimate multiple regressions, but it is not as extensive as the other two packages.



cient, which is simply the ratio of estimated coefficient divided by its standard error,18

and the p value, or the exact level of significance of the t statistic. For each coefficient,

the null hypothesis is that the population value of that coefficient (the big B) is zero,

that is, the particular regressor has no influence on the regressand, after holding the

other regressor values constant.

The smaller the p value, the greater the evidence against the null hypothesis. For ex-

ample, take the variable experience, Exper. Its coefficient value of about 0.17 has a t

value of about 10.38. If the hypothesis is that the coefficient value of this variable in the

PRF is zero, we can soundly reject that hypothesis because the p value of obtaining

such a t value or higher is practically zero. In this situation we say that the coefficient of

the experience variable is highly statistically significant, meaning that it is highly sig-

nificantly different from zero. To put it differently, we can say work experience is an

important determinant of hourly wage, after allowing for the influence of the other

variables in the model – an unsurprising finding.

If we choose a p value of 5%, Table 1.2 shows that each of the estimated coefficients

is statistically significantly different from zero, that is, each is an important determi-

nant of hourly wage.

The third part of Table 1.2 gives some descriptive statistics. The R2 (the coefficient

of determination) value of �0.32 means about 32% of the variation in hourly wages is

explained by the variation in the five explanatory variables. It might seem that this R2

value is rather low, but keep in mind that we have 1,289 observations with varying

values of the regressand and regressors. In such a diverse setting the R2 values are typi-

cally low, and they are often low when individual-level data are analyzed. This part also

gives the adjusted R2 value, which is slightly lower than the unadjusted R2 values, as

noted before. Since we are not comparing our wage model with any other model, the

adjusted R2 is not of particular importance.

If we want to test the hypothesis that all the slope coefficients in the wage regression

are simultaneously equal to zero, we use the F test discussed previously. In the present

example this F value is �123. This null hypothesis can be rejected if the p value of the

estimated F value is very low. In our example, the p value is practically zero, suggesting

that we can strongly reject the hypothesis that collectively all the explanatory variables

have no impact on the dependent variable, hourly wages here. At least one regressor

has significant impact on the regressand.

The table also lists several other statistics, such as Akaike and Schwarz information

criteria, which are used to choose among competing models, the Durbin–Watson sta-

tistic, which is a measure of correlation in the error term, and the log likelihood statis-

tic, which is useful if we use the ML method (see the Appendix to this chapter). We will

discuss the use of these statistics as we move along.19

Although Eviews does not do so, other software packages present a table known as

the Analysis of Variance (AOV) table, but this table can be easily derived from the in-

formation provided in the third part of Table 1.2. However, Stata produces not only

the coefficients, their standard errors, and the aforementioned information, but also

16 The linear regression model

18 The implicit null hypothesis here is that the true population coefficient is zero. We can write the t ratio

as: t b B se bk k k� �( ) / ( ), which reduces to t b se bk k� / ( ) if Bk is in fact zero. But you can test any other

hypothesis for Bk by putting that value in the preceding t ratio.

19 Eviews also gives the Hannan–Quinn information criterion, which is somewhere between the Akaike

and Schwarz information criteria.



the AOV table. It also gives the 95% confidence interval for each estimated coefficient,

as shown in Table 1.3.

As you can see, there is not much difference between Eviews and Stata in the esti-

mates of the regression coefficients. A unique feature of Stata is that it gives the 95%

confidence interval for each coefficient, computed from Eq. (1.14). Consider, for exam-

ple, the education variable. Although the single best estimate of the true education co-

efficient is 1.3703, the 95% confidence interval is (1.2410 to 1.4995). Therefore, we can

say that we are 95% confident that the impact of an additional year of schooling on

hourly earnings is at least $1.24 and at most $1.49, ceteris paribus (holding other things

constant).

So, if you hypothesize that the true education coefficient is, say, 1.43, as noted ear-

lier, we cannot say that 1.43 lies in this interval because this interval is fixed. Therefore,

1.43 either lies in this interval or does not. All we can say is that if we follow the proce-

dure of establishing confidence intervals in the manner of Eq. (1.14) in repeated sam-

pling we will be reasonably sure that the confidence interval includes the true Bk. Of

course, we will be wrong 5% of the time.

Impact on mean wage of a unit change in the value of a regressor

The female coefficient of �–3.07 means, holding all other variables constant, that the

average female hourly wage is lower than the average male hourly wage by about 3 dol-

lars. Similarly, ceteris paribus, the average hourly wages of a nonwhite worker is lower

by about $1.56 than a white worker’s wage. The education coefficient suggests that the

average hourly wages increases by about $1.37 for every additional year of education,

ceteris paribus. Similarly, for every additional year of work experience, the average

hourly wage goes up by about 17 cents, ceteris paribus.

Test of the overall significance of the regression

To test the hypothesis that all slope coefficients are simultaneously equal to zero (i.e.

all the regressors have zero impact on hourly wage), Stata produced Table 1.4.

The AOV gives the breakdown of the total sum of squares (TSS) into two compo-

nents: one explained by the model, called the explained sum of squares (ESS) – that is

the sum of squares explained by the chosen model, and the other not explained by the

model, called the residual sum of squares (RSS), terms we have encountered before.

Now each sum of squares has its associated degrees of freedom. The TSS has (n – 1)

df, for we lose one df in computing the mean value of the dependent variable Y from
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w Coef. Std. Err. t P>|t| [95% Conf. Interval]

female –3.074875 .3646162 –8.43 0.000 –3.790185 –2.359566

nonwhite –1.565313 .5091875 –3.07 0.002 –2.564245 –.5663817

union 1.095976 .5060781 2.17 0.031 .1031443 2.088807

education 1.370301 .0659042 20.79 0.000 1.241009 1.499593

experience .1666065 .0160476 10.38 0.000 .1351242 .1980889

_cons –7.183338 1.015788 –7.07 0.000 –9.176126 –5.190551

Note: |t| means the absolute t value because t can be positive or negative.

Table 1.3 Stata output of the wage function.



the same data. ESS has (k – 1) degrees of freedom, the k regressors excluding the inter-

cept term, and RSS has (n – k) degrees of freedom, which is equal to the number of ob-

servations, n, minus the number of parameters estimated (including the intercept).

Now if you divide the ESS by its df and divide RSS by its df, you obtain the mean

sums of squares (MS) of ESS and RSS. And if you take the ratio of the two MS, you

obtain the F value. It can be shown that under the null hypothesis all slope coefficients

are simultaneously equal to zero, and assuming the error term ui is normally distrib-

uted, the computed F value follows the F distribution with numerator df of (k – 1) and

denominator df of (n – k).

In our example, this F value is about 123, which is the same as that obtained from

Eviews output. As the table shows, the probability of obtaining such an F or greater is

practically zero, suggesting that the null hypothesis can be rejected. There is at least

one regressor that is significantly different from zero.

If the AOV table is not available, we can test the null hypothesis that all slope coeffi-

cients are simultaneously equal to zero, that is, B B Bk2 3 0� � � �� , by using an in-

teresting relationship between F and R2, which is as follows:

F
R k

R n k
�

�
� �

2

2

1

1

/( )

( )/( )
(1.18)20

Since the R2 value is produced by all software packages, it may be easier to use Eq.

(1.18) to test the null hypothesis. For our example the computed R2 is 0.3233. Using

this value, we obtain:

F �
�

�
03233 5

1 03233 1283
122 60

. /

( . )/
. (1.19)

This value is about the same as that shown in the Stata AOV table.

It should be emphasized that the formula given in Eq. (1.18) is to be used only if we

want to test that all explanatory variables have zero impact on the dependent variable.

As noted before, R2 is the proportion of the variation in the dependent variable ex-

plained by the regressor included in the model. This can be verified if you take the ratio

of ESS to TSS from the AOV table (= 25967.2805/80309.8247) = R2 = 0.3233.

18 The linear regression model

Source SS df MS Number of obs = 1289

Model 25967.2805 5 5193.45611 F(5, 1283) = 122.61

Residual 54342.5442 1283 42.3558411 Prob > F = 0.0000

Total 80309.8247 1288 62.3523484 R-squared = 0.3233

Adj R-squared = 0.3207

Root MSE = 6.5081

Table 1.4 The AOV table.

20 For proof, see Gujarati/Porter, op cit., p. 241.



1.9 Forecasting

Sometimes we may want to use the estimated regression model for forecasting pur-

poses. Return to our wage regression given in Table 1.2. Suppose we are given infor-

mation about a prospective wage earner concerning his or her X values. Given that

information and the regression coefficients given in Table 1.2 we can easily calculate

the expected (average) wage of this person. Whether that prospective wage earner will

actually get the wages calculated from the regression in Table 1.2 cannot be told with

certainty. All we can say is what a person with the given (X) characteristics might earn.

This is the essence of forecasting.

Forecasting is generally used in the context of time series analysis. In Chapter 16 we

will explore this topic more fully with illustrative examples.

1.10 The road ahead

Now that we have presented the basics of the CLRM, where do we go from here? The

answer follows.

The wage regression given in Table 1.2 is based on the assumptions of the

CLRM. The question that naturally arises is: how do we know that this model satis-

fies the assumptions of the CLRM? We need to know answers to the following

questions:

1 The wage model given in Table 1.2 is linear in variables as well as parameters.

Could the wage variable, for instance, be in logarithmic form? Could the variables

for education and experience be also in logarithmic form? Since wages are not ex-

pected to grow linearly with experience forever, could we include experience

squared as an additional regressor? All these questions pertain to the functional

form of the regression model, and there are several of them. We consider this

topic in Chapter 2.

2 Suppose some of the regressors are quantitative and some are qualitative or nomi-

nal scale variables, also called dummy variables. Are there special problems in

dealing with dummy variables? How do we handle the interaction between quan-

titative and dummy variables in a given situation? In our wage regression we have

three dummy variables, female, nonwhite, and union. Do female union workers

earn more than non-union female workers? We will deal with this and other as-

pects of qualitative regressors in Chapter 3.

3 If we have several regressors in a regression model, how do we find out that we do

not have the problem of multicollinearity? If we have that problem, what are the

consequences? And how do we deal with them? We discuss this topic in Chapter

4.

4 In cross-sectional data the error variance may be heteroscedastic rather than

homoscedastic. How do we find that out? And what are the consequences of

heteroscedasticity? Are OLS estimators still BLUE? How do we correct for

heteroscedasticity? We answer these questions in Chapter 5.

5 In time series data the assumption of no autocorrelation in the error term is un-

likely to be fulfilled. How do we find that out? What are the consequences of
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autocorrelation? How do we correct for autocorrelation? We will answer these

questions in Chapter 6.

6 One of the assumptions of the CLRM is that the model used in empirical analysis

is “correctly specified” in the sense that all relevant variables are included in the

model, no superfluous variables are included in the model, the probability distri-

bution of the error term is correctly specified, and there are no errors of measure-

ment in the regressors and regressand. Obviously, this is a tall order. But it is

important that we find out the consequences of one or more of these situations if

they are suspected in a concrete application. We discuss the problem of model

specification in some detail in Chapter 7. We also discuss briefly in this chapter

the case of stochastic regressors instead of fixed regressors, as assumed in the

CLRM.

7 Suppose the dependent variable is not a ratio or interval scale variable but is a

nominal scale variable, taking values of 1 and 0. Can we still apply the usual OLS

techniques to estimate such models? If not, what are the alternatives? The answer

to these questions can be found in Chapter 8, where we discuss the logit and

probit models, which can handle a nominal dependent variable.

8 Chapter 9 extends the bivariate logit and probit models to multi-category nominal

scale variables, where the regressand has more than two nominal values. For ex-

ample, consider the means of transportation to work. Suppose we have three

choices: private car, public bus, or train. How do we decide among these choices?

Can we still use OLS? As we will show in this chapter, such problems require non-

linear estimation techniques. Multinomial conditional logit or multinomial

probit models discussed in this chapter show how multi-category nominal scale

variables can be modeled.

9 Although nominal scale variables cannot be readily quantified, they can some-

times be ordered or ranked. Ordered logit and ordered probit models, discussed

in Chapter 10, show how ordered or ranked models can be estimated.

10 Sometimes the regressand is restricted in the values it takes because of the design

of the problem under study. Suppose we want to study expenditure on housing by

families making income under $50,000 a year. Obviously, this excludes families

with income over this limit. The censored sample and truncated sample model-

ing discussed in Chapter 11 show how we can model phenomena such as this.

11 Occasionally we come across data that is of the count type, such as the number of

visits to a doctor, the number of patents received by a firm, the number customers

passing through a check-out counter in a span of 15 minutes, and so on. To model

such count data, the Poisson probability distribution (PPD) is often used. Be-

cause the assumption underlying the PPD may not always be fulfilled, we will dis-

cuss briefly an alternative model, knows as the negative binomial distribution

(NBD). We discuss these topics in Chapter 12.

12 In cases of time series data, an underlying assumption of the CLRM is that the time

series are stationary. If that is not the case, is the usual OLS methodology still ap-

plicable? What are the alternatives? We discuss this topic in Chapter 13.

13 Although heteroscedasticity is generally associated with cross-sectional data, it

can also arise in time series data in the so-called volatility clustering phenomenon
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observed in financial time series. The ARCH and GARCH models discussed in

Chapter 14 will show how we model volatility clustering.

14 If you regress a nonstationary time series on one or more nonstationary time

series, it might lead to the so-called spurious or nonsense regression phenome-

non. However, if there is a stable long-term relationship between variables, that is

if the variables are cointegrated, there need not be spurious regression. In Chap-

ter 15 we show how we find this out and what happens if the variables are not

cointegrated.

15 Forecasting is a specialized field in time series econometrics. In Chapter 16 we dis-

cuss the topic of economic forecasting using the LRM as well as two prominently

used methods of forecasting, namely, ARIMA (autoregressive integrated moving

average) and VAR (vector autoregression). With examples, we show how these

models work.

16 The models discussed in the preceding chapters dealt with cross-sectional or time

series data. Chapter 17 deals with models that combine cross-sectional and time

series data. These models are known as panel data regression models. We show

in this chapter how such models are estimated and interpreted.

17 In Chapter 18 we discuss the topic of duration or survival analysis. Duration of a

marriage, duration of a strike, duration of an illness, and duration of unemploy-

ment are some examples of duration data.

18 In Chapter 19, the final chapter, we discusses a topic that has received consider-

able attention in the literature, namely, the method of Instrumental Variables

(IV). The bulk of this book has been devoted to the case of nonstochastic or fixed

regressors, but there are situations where we have to consider stochastic, or

random, regressors. If the stochastic regressors are correlated with the error term,

the OLS estimators are not only biased but are also inconsistent – that is, the bias

does not diminish no matter how large the sample. The basic principle of IV is that

it replaces the stochastic regressors with another set of regressors, called instru-

mental variables (or simply instruments), that are correlated with the stochastic

regressors but are uncorrelated with the error term. As a result, we can obtain

consistent estimates of the regression parameters. In this chapter we show how

this can be accomplished.

In the remainder of the book, we will discuss all these topics with concrete exam-

ples. Of course, the list of topics discussed does not by any means exhaust all the ec-

onometric techniques, which are continuously evolving. But I hope the topics and

examples discussed in this book will provide beginning students and researchers a

broad exposure to the commonly used econometric techniques. I further hope that the

examples discussed in the book will whet the reader’s appetite to study more advanced

econometric techniques.

Exercise

1.1 Consider the regression results given in Table 1.2.

(a) Suppose you want to test the hypothesis that the true or population regres-

sion coefficient of the education variable is 1. How would you test this hy-

pothesis? Show the necessary calculations.
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(b) Would you reject or not reject the hypothesis that the true union regression

coefficient is 1?

(c) Can you take the logs of the nominal variables, such as gender, race, and

union status? Why or why not?

(d) What other variables are missing from the model?

(e) Would you run separate wage regressions for white and nonwhite workers,

male and female workers, and union and non-union workers? And how

would you compare them?

(f) Some states have right-to-work laws (i.e. union membership is not manda-

tory) and some do not have such laws (i.e. mandatory union membership is

permitted). Is it worth adding a dummy variable taking the value of 1 if the

right-to-work laws are present and 0 otherwise? A priori, what would you

expect if this variable is added to the model?

(h) Would you add the age of the worker as an explanatory variable to the

model? Why or why not?

Appendix

The method of maximum likelihood (ML)

As noted earlier, an alternative to OLS is the method of maximum likelihood (ML).

This method is especially useful in estimating the parameters of nonlinear (in parame-

ter) regression models, such as the logit, probit, multinomial logit, and multinomial

probit models. We will encounter ML in the chapters where we discuss these models.

To minimize the algebra, we consider a two-variable regression model:

Y B B X ui i i� � �1 2 (1)

where

u IIDNi ~ ( , )0 2
 (2)

That is, the error term is independently and identically distributed as a normal distri-

bution with zero mean and constant variance (i.e. standard normal distribution).

Since B1 and B2 are constants and X is assumed to be fixed in repeated sampling, Eq.

(2) implies:

Y IIDN B B Xi i~ ( , )1 2
2� 
 (3)21

that is, Yi is also independently and identically distributed as a normal distribution

with the stated parameters. Therefore we can write

f Y Y B B Xi i i( ) exp ( )� � � ��
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which is the density function of a normally distributed Yi with mean and variance

given in Eq. (3). Note: exp means e raised to the power of the expression in the curly

brackets, e being the base of the natural logarithm.

Since each Yi is distributed as in Eq. (4), the joint density (i.e. joint probability) of the

Y observations can be written as the product of n such terms, one for each Yi. This

product gives:

f Y Y Y
Y B B X

n
n n

i i( , ,. . . . )
( )

exp
( )

1 2
1 2

2

2
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1
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 � 
 �
� (5)

If Y1, Y2, ..., Yn are given or known but B1, B2, and 
2 are unknown, the function in

Eq. (5) is called a likelihood function, denoted by LF.

The method of maximum likelihood, as the name suggests, consists of estimating

the unknown parameters in such a way that the probability of observing the sample Ys

is the maximum possible. Therefore, we have to find the maximum of Eq. (5). It is easy

to find the maximum if we take the logarithm of this function on both sides to yield:

� � �
� �

	n n Y B B Xi i

2 2
2

1

2
2 1 2

2

2
ln ln( )

( )

 �



(6)

Since the last term in Eq. (6) enters negatively, to maximize (6) we have to minimize

this last term. Apart from 
2 , this term is nothing but the squared error term of OLS. If

you differentiate the last term with respect to the intercept and slope coefficient, you

will find that the estimators of B1 and B2 are the same as the least squares estimators

discussed in the text.

There is, however, a difference in the estimator of 
2 . It can be shown that this esti-

mator is:

�
ML
2

2

� 	 e

n

i (7)

whereas the OLS estimator is:

�
� �
�

	 e

n k

i
2

(8)

In other words, the ML estimator of the unknown variance is not adjusted for the de-

grees of freedom, whereas the OLS estimator is. In large samples, however, the two es-

timators give about the same value, although in small sample the ML estimator is a

biased estimator of the true error variance.

If you look at the regression results of our wage example given in Table 1.2, you will

see the ln LF value is –4240.37. This is the maximized value of the log likelihood func-

tion. If you take the anti-log of this value, you will see it to be close to zero. Also note

that the values of all the regression coefficients given in that table are also ML esti-

mates under the assumption that the error term is normally distributed.

So, for all practical purposes, the OLS and ML estimates of the regression coeffi-

cients are the same, assuming the error term is normally distributed. That is why it is

important to find out if the error term is in fact normally distributed in any applica-

tion. We will discuss this topic further in Chapter 7.
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The ML estimators have many desirable large sample properties: (1) they are as-

ymptotically unbiased; (2) they are consistent; (3) they are asymptotically efficient –

that is, in large samples they have the smallest variance among all consistent estima-

tors; and (4) they are asymptotically normally distributed.

Keep in mind the distinction between an unbiased estimator and a consistent esti-

mator. Unbiasedness is a property of repeated sampling: keeping the sample size fixed,

we draw several samples and from each sample we obtain an estimate of the unknown

parameter. If the average value of all these estimates is equal to the true value of the pa-

rameter, then that estimator (or that method of estimation) produces an unbiased

estimator.

An estimator is said to be consistent if it approaches the true value of the parameter

as the sample size gets larger and larger.

As noted previously, in OLS we use R2 as a measure of goodness of fit of the esti-

mated regression line. The equivalent of R2 in the ML method is the pseudo R2, which

is defined as:22

pseudo-R2 = 1
0

�
lf

lf

L

L
(9)

where lfL is the log likelihood of the model under consideration and lfL0 is the log like-

lihood without any regressors in the model (except the intercept). The pseudo-R2 thus

measures the proportion by which lfL is smaller (in absolute size) than lfL0.

Since likelihood represents joint probability, it must lie between 0 and 1. Therefore

the value of lfL must be negative, as in our illustrative example.

In OLS we test the overall significance of the regression model by the F test. The

equivalent test under ML is the likelihood ratio statistic �.

This is defined as:

� � �2 0( )lf lfL L (10)

Under the null hypothesis that the coefficients of all regressors are jointly equal to

zero, this statistic is distributed as a �2 (chi-square) distribution with (k – 1) df, where

(k – 1) is the number of regressors. As with other tests of significance, if the computed

chi-square value exceeds the critical chi-square value at the chosen level of signifi-

cance, we reject the null hypothesis.
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2
Functional forms of regression models

You will recall that our concern in this book is primarily with linear regression models,

that is, models linear in parameters; they may or may not be linear in variables. In this

chapter we consider several models that are linear in parameters but are not necessar-

ily so in the variables. In particular, we will discuss the following models, which are fre-

quently used in empirical analysis.

1 Log-linear or double-log models where the regressand as well as the regressors are

all in logarithmic form.

2 Log-lin models in which the regressand is logarithmic but the regressors can be in

log or linear form.

3 Lin-log models in which the regressand is in linear form, but one or more

regressors are in log form.

4 Reciprocal models in which the regressors are in inverse form.

5 Standardized variable regression models

We will use several examples to illustrate the various models.

2.1 Log-linear, double log or constant elasticity models

We consider the celebrated Cobb–Douglas (CD) production function, which may be

expressed as:1

Q B L Ki i
B

i
B� 1

2 3 (2.1)

where Q = output, L = labor input, K = capital, and B1 is a constant.

This model is nonlinear in the parameters and to estimate it as it stands requires

nonlinear estimation techniques. However, if we take the logarithm of this function,

we obtain

ln ln ln lnQ B B L B Ki i i� � �1 2 3 (2.2)

where ln denotes natural logarithm.

Writing ln B1 = A, we can write Eq. (2.2) as:

ln ln lnQ A B L B Ki i i� � �2 3 (2.3)
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Equation (2.3) is linear in the parameters A, B2, and B3 and is therefore a linear

equation, although it is nonlinear in the variables Q, L, and K.2

Adding the error term ui to Eq. (2.3), we obtain the following LRM:

ln ln lnQ A B L B K ui i i i� � � �2 3 (2.4)

Equation (2.4) is known as a log-log, double-log, log-linear, or constant elasticity

model, because both the regressand and regressors are in the log form.

An interesting feature of the log-linear model is that the slope coefficients can be in-

terpreted as elasticities.3 Specifically, B2 is the (partial) elasticity of output with respect

to the labor input, holding all other variables constant (here capital, or K). That is, it gives

the percentage change in output for a percentage change in the labor input, ceteris pari-

bus.4 Similarly, B3 gives the (partial) elasticity of output with respect to the capital input,

holding all other inputs constant. Since these elasticities are constant over the range of

observations, the double-log model is also known as constant elasticity model.

An advantage of elasticities is that they are pure numbers, that is, devoid of units in

which the variables are measured, such as dollars, person-hours, or capital-hours, be-

cause they are ratios of percentage changes.

Another interesting property of the CD function is that the sum of the partial slope

coefficients, (B2 + B3), gives information about returns to scale, that is, the response of

output to a proportional change in the inputs. If this sum is 1, then there are constant

returns to scale – that is, doubling the inputs will double the output, tripling the

inputs will triple the output, and so on. If this sum is less than 1, then there are de-

creasing returns to scale – that is, doubling the inputs less than doubles the output.

Finally, if this sum is greater than 1, there are increasing returns to scale – that is,

doubling the inputs more than doubles the output.

Before presenting a concrete example, it should be noted that in a log-linear regres-

sion model involving several variables, the slope coefficient of each regressor gives the

partial elasticity of the dependent variable with respect to that variable, holding all

other variables constant.

The Cobb–Douglas production function for the USA

To illustrate the CD function, we present in Table 2.1 data on output (as measured by

value added, in thousands of dollars), labor input (worker hours, in thousands), and

capital input (capital expenditure, in thousands of dollars) for the US manufacturing

sector. The data is cross-sectional, covering 50 states and Washington, DC, for the

year 2005. The table can be found on the companion website.

The OLS regression results are given in Table 2.2.
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intercept may not have any viable economic interpretation.

3 An elasticity is simply the ratio of the percentage change in one variable divided by the percentage in

another variable. For example, if Q is quantity and P is price, then the percentage change in quantity divided

by the percentage in price is called the price elasticity.
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Interpretation of the results
The first point to notice is that all the regression coefficients (i.e. elasticities) are indi-

vidually statistically highly significant, for their p values are quite low. Secondly, on the

basis of the F statistic we can also conclude that collectively the two factor inputs, labor

and capital, are highly statistically significant, because its p value is also very low. The

R2 value of 0.96 is also quite high, which is unusual for cross-sectional data involving

heterogeneous states. The Akaike and Schwarz criteria are alternatives to R2, which

are further discussed later in the chapter. The Durbin–Watson statistic, although rou-

tinely produced by Eviews, may not always be useful in cross-sectional data, although

sometimes it is an indication of model specification errors, as we will show in Chapter

7 on specification errors.

The interpretation of the coefficient of lnLABOR of about 0.47 is that if we increase

the labor input by 1%, on average, output goes up by about 0.47 %, holding the capital

input constant. Similarly, holding the labor input constant, if we increase the capital

input by 1%, on average, the output increases by about 0.52 %. Relatively speaking, it

seems a percentage increase in the capital input contributes more towards the output

than a percentage increase in the labor input.

The sum of the two slope coefficients is about 0.9896, which is close to 1. This

would suggest that the US Cobb–Douglas production function was characterized by

constant returns to scale in 2005.5

Incidentally, if you want to get back to the original production function given in Eq.

(2.1), it is as follows:

Q L Ki � 4879 0 47 0 51. . . (2.5)

Note: 48.79 is approximately the anti-log of 3.8876.6
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Dependent Variable: LOUTPUT
Method: Least Squares
Sample: 1 51
Included observations: 51

Coefficient Std. Error t-Statistic Prob.

C 3.887600 0.396228 9.811514 0.0000

lnLABOR 0.468332 0.098926 4.734170 0.0000

lnCAPITAL 0.521279 0.096887 5.380274 0.0000

R-squared 0.964175 Mean dependent var 16.94139
Adjusted R-squared 0.962683 S.D. dependent var 1.380870
S.E. of regression 0.266752 Akaike info criterion 0.252028
Sum squared resid 3.415520 Schwarz criterion 0.365665
Log likelihood –3.426721 Durbin–Watson stat 1.946387
F-statistic 645.9311 Prob(F-statistic) 0.000000

Note: L stands for the log of.

Table 2.2 Cobb–Douglas function for USA, 2005.

5 We will not discuss here the question of whether a production function for the USA as a whole is

meaningful or not. There is a vast literature about this topic. Our main objective here is to illustrate the

double-log model.

6 Remember that A = ln B1, therefore B1 = anti-log of A.



Evaluation of the results
Although, judged by the usual statistical criteria, the results of the Cobb–Douglas pro-

duction function given in Table 2.2 look impressive, we have to guard against the pos-

sibility of heteroscedasticity. This is because our “sample” consists of very diverse

states, with diverse manufacturing sectors. Also, the physical size and population den-

sity varies from state to state. In Chapter 5, on heteroscedasticity, we will reconsider

the Cobb–Douglas production function to see if we have the problem of

heteroscedasticity.

In Chapter 7, on specification errors, we will also find out if the error term is nor-

mally distributed, for the t and F tests dependent critically on the normality assump-

tion, especially if the sample size is small. In that chapter we will also consider if there

is any specification error in the Cobb–Douglas production function used in our

example.

Although the double-log specification of the Cobb–Douglas production function is

standard in the literature, for comparative purposes we also present the results of the

linear production function, namely,

Outputi = A1 + A2Labori +A3Capitali + ui (2.6)

The results of this regression are shown in Table 2.3.

The labor and capital coefficients in this regression are statistically highly signifi-

cant. If labor input increases by a unit, the average output goes up by about 48 units,

holding capital constant. Similarly, if capital input goes up by a unit, output, on aver-

age, goes up by about 10 units, ceteris paribus. Notice that the interpretations of the

slope coefficients in the log-linear production function and those in the linear produc-

tion function are different.

Which is a better model, the linear model or the log-linear one? Unfortunately, we

cannot compare the two models directly, as the dependent variables in the two models

are different. Also, we cannot compare the R2 values of the two models, because to

compare the R2s of any two models the dependent variable must be the same in the

two models. In Section 2.8 we will show how we can compare the linear and log-linear

models.
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Dependent Variable: OUTPUT
Method: Least Squares
Sample: 1 51
Included observations: 51

Coefficient Std. Error t-Statistic Prob.

C 233621.5 1250364. 0.186843 0.8526

LABOR 47.98736 7.058245 6.798766 0.0000

CAPITAL 9.951890 0.978116 10.17455 0.0000

R-squared 0.981065 Mean dependent var 43217548
Adjusted R-squared 0.980276 S.D. dependent var 44863661
S.E. of regression 6300694. Akaike info criterion 34.20724
Sum squared resid 1.91E+15 Schwarz criterion 34.32088
Log likelihood –869.2846 Durbin–Watson stat 1.684519
F-statistic 1243.514 Prob(F-statistic) 0.000000

Table 2.3 Linear production function.



2.2 Testing validity of linear restrictions

The log-linear Cobb–Douglas production function fitted to the production data

showed that the sum of the output–labor and output–capital elasticities is 0.9896,

which is about 1. This would suggest that there were constant returns to scale. How do

we test this explicitly?

If in fact B B2 3 1� � , which is an example of a linear restriction, one way of testing

for constant returns to scale is to incorporate this restriction directly into the estimat-

ing procedure. To see how this is done, we can write

B B2 31� � (2.7)7

As a result, we can write the log-linear Cobb–Douglas production function as:

ln ( )ln lnQ A B L B K ui i i i� � � � �1 3 3 (2.8)

Collecting terms, we can write Eq. (2.8) as:

ln ln (ln ln )Q L A B K L ui i i i i� � � � �3 (2.9)

Using the properties of logarithms, we can write this equation as:8
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where Q Li i/ output–labor ratio, or labor productivity, and K Li i/ capital–labor ratio,

two of the “great” ratios of economic development and growth.

In words, Eq. (2.10) states that labor productivity is a function of capital labor ratio.

We call Eq. (2.10) the restricted regression (RS) and the original Eq. (2.4) the unre-

stricted regression (URS) for obvious reasons.

Once we estimate Eq. (2.10) by OLS, we can obtain the estimated value of B3, from

which we can easily obtain the value of B2 because of the linear restriction (B2 + B3 =

1). How do we decide if the linear restriction is valid? To answer this question, we first

present the results of the regression based on Eq. (2.10): Table 2.4.

These results suggest that if the capital–labor ratio goes up by 1%, labor productiv-

ity goes up by about ½%. In other words, the elasticity of labor productivity with re-

spect to capital–labor ratio is ½, and this elasticity coefficient is highly significant.

Note that the R2 of about 0.38 is not directly comparable with the R2 value of Table 2.2

because the dependent variables in the two models are different.

To test the validity of the linear regression, we first define:

RSSR = residual sum of squares from the restricted regression, Eq. (2.10)

RSSUR= residual sum of squares from the unrestricted regression, Eq. (2.4)

m = number of linear restrictions (1 in the present example)

k = number of parameters in the unrestricted regression (3 in the present example)

n = number of observations (51 in the present example).
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8 Note that ln XY= ln X + ln Y; ln(X/Y) = ln X – ln Y; ln Xk = k ln X (where k is a constant), but note that ln

(X + Y) � ln X + ln Y.



Now to test the validity of the linear restriction, we use a variant of the F statistic

discussed in Chapter 1.9

F
RSS RSS m

RSS n k
Fm n k�

�

� �
( )/

/( )
~ ,( )

R UR

UR

(2.11)

which follows the F probability distribution of statistics, where m and (n – k) are the

numerator and denominator degrees of freedom. It should be noted that RSSR is never

smaller than RSSUR, so the F ratio is always nonnegative.

As usual, if the computed F exceeds the critical F value at the chosen level of signifi-

cance and the appropriate degrees of freedom, we reject the null hypothesis; other-

wise, we do not reject it.

From Table 2.2 we obtain RSSUR = 3.4155, and from Table 2.4 we obtain RSSR =

3.4255. We know that m = 1 and n = 51. Putting these values in Eq. (2.11), the reader

will find that the estimated F value is about 0.142. For 1 df in the numerator and 48 df

in the denominator, this F value is not significant; actually the p value of obtaining

such an F (the exact level of significance) is about 0.29. Therefore the conclusion in the

present example is that the estimated Cobb–Douglas production function in Table 2.2

probably exhibits constant returns to scale. So there is no harm in using the produc-

tion function given in Eq. (2.10). But it should be emphasized that the F testing proce-

dure outlined above is valid only for linear restriction; it is not valid for testing

nonlinear restriction(s), such as B2B3 = 1.

2.3 Log-lin or growth models

A topic of great interest to economists, the government, the business sector, and

policy makers is the rate of growth of key economic variables, such as GDP, money

supply, population, employment, productivity and interest rates, to name a few.

30 The linear regression model

Dependent Variable: LOG(OUTPUT/LABOR)
Method: Least Squares
Sample: 1 51
Included observations: 51

Variable Coefficient Std. Error t-Statistic Prob.

C 3.756242 0.185368 20.26372 0.0000

LOG(CAPITA
L/LABOR)

0.523756 0.095812 5.466486 0.0000

R-squared 0.378823 Mean dependent var 4.749135
Adjusted R-squared 0.366146 S.D. dependent var 0.332104
S.E. of regression 0.264405 Akaike info criterion 0.215754
Sum squared resid 3.425582 Schwarz criterion 0.291512
Log likelihood –3.501732 Prob(F-statistic) 0.000002
F-statistic 29.88247 Durbin–Watson stat 1.93684

Table 2.4 Cobb–Douglas production function with linear restriction.

9 For details, see Gujarati/Porter, op cit., pp. 243–6.



To see how the growth rate of an economic variable can be measured, we proceed as

follows. To be specific, suppose we want to measure the rate of growth of real GDP (i.e.

GDP adjusted for inflation) for the USA for the period 1960–2007. For this purpose,

suppose we use the following model:

RGDP RGDP rt
t� �1960 1( ) (2.12)

where RGDP stands for real GDP, r is the rate of growth, and t is time measured

chronologically.

Equation (2.12) is the well-known compound interest formula from basic finance.

Taking the natural log of both sides of Equation (2.12), we obtain

ln ln ln( )RGDP RGDP t rt � � �1960 1 (2.13)

Now letting B1 = ln RGDP1960 and B2 = ln (1 + r), we can write Equation (2.13) as

ln RGDPt = B1 + B2t (2.14)

Adding the error term ut to (2.14), we obtain the following regression model:10

ln RGDPt = B1 + B2t + ut (2.15)

Equation (2.15) is like any other regression model; the only difference is that here

the regressor is “time”, which takes values of 1, 2, ..., 47.

Model (2.15) is called a semilog model because only one variable (in this case the

regressand) appears in the logarithmic form, whereas the regressor (time here) is in

the level or linear form. For descriptive purposes we can call (2.15) a log-lin model.

Equation (2.15) can be estimated by the usual OLS routine. But before we present

the regression results, it may be noted that the slope coefficient B2 in (2.14) measures

the constant proportional or relative change in the regressand for a given absolute

change in the value of the regressor. That is,

B2 �
relative changein regressand

absolute changein regressor
(2.16)11

In practice we multiply B2 by 100 to compute the percentage change, or the growth

rate; 100 times B2 is also known as the semi-elasticity of the regressand with respect

to the regressor.

Regression results
Using the data on Real GDP for the USA for 1960–2007, we obtain the results given

in Table 2.6. Table 2.5, containing the data, can be found on the companion

website.
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10 We add the error term to take into account the possibility that the compound interest formula may

not hold exactly.

11 Readers familiar with calculus can differentiate Equation (2.15) with respect to t, to obtain:

d d(ln ) /RGDP t B� 2. But d d d d(ln ) / ( / )( ( ) / )RGDP t RGDP RGDP t� 1 , which is a relative change in RGDP.
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Interpretation of the results
These results show that over the period of 1960–2007 the USA’s real GDP had been in-

creasing at the rate of 3.15% per year. This growth rate is statistically significant, for the

estimated t value of about 90.82 is highly significant.

What is the interpretation of the intercept? If you take the anti-log of 7.8756, you

will obtain anti-log (7.8756) = 2632.27, which is the beginning value of real GDP, that

is, the value at the beginning of 1960, our starting point. The actual value of RGDP for

1960 was about $2501.8 billion.

Figure 2.1 shows the scatter diagram of the log of real GDP and time and the fitted

regression line:

A technical note: The coefficient B2 gives the instantaneous (at a point in time) rate

of growth and not the compound (over a period of time) rate of growth, r. But it is easy

to compute the latter, noting that B2 = ln(1 + r). Therefore, r = anti-log(B2) – 1. Now

anti-log (B2) = 1.03199. Therefore the compound rate of growth is 0.03199 or about

32 The linear regression model

Dependent Variable: LRGDP
Method: Least Squares
Sample: 1960 2007
Included observations: 48

Coefficient Std. Error t-Statistic Prob.

C 7.875662 0.009759 807.0072 0.0000

TIME 0.031490 0.000347 90.81657 0.0000

R-squared 0.994454 Mean dependent var 8.647156
Adjusted R-squared 0.994333 S.D. dependent var 0.442081
S.E. of regression 0.033280 Akaike info criterion –3.926969
Sum squared resid 0.050947 Schwarz criterion –3.849003
Log likelihood 96.24727 Durbin–Watson stat 0.347740
F-statistic 8247.650 Prob(F-statistic) 0.000000

Table 2.6 Rate of growth of real GDP, USA, 1960–2007.

Figure 2.1 Log of real GDP, 1960–2007.



3.2%, which is slightly greater than the instantaneous rate of growth of about 3.1%. The

difference is due to compounding.

The linear trend model

Suppose that, instead of estimating the growth model (2.14), we estimate the following

model:

RGDP A A time ut t� � �1 2 (2.17)

This is known as the linear trend model and the time variable is known as the trend

variable. The slope coefficient A2 in this model gives the absolute (not relative or per-

centage) change in RGDP per unit time period. If A2 is positive, there is an upward

trend in RGDP, but if it is negative, there is a downward trend in RGDP or any

regressand.

Using the data given in Table 2.5, we obtain the results in Table 2.7.

These results show that over the period 1960–2007, real GDP in the USA increased

by about $187 billion per year, showing an upward trend – not a surprising finding.

The choice between the growth model of (2.15) and the linear trend model of (2.17)

is up to the individual researcher, although for comparing RGDP across regions or

countries it is the relative growth that may be more relevant. Note that since the de-

pendent variables in the log-linear and linear trend models are not the same, it is not

appropriate to compare the two R2 values in determining which model to choose. But

more on this in Section 2.7.

Since we are dealing with time series data, the Durbin–Watson statistic, which is a

measure of autocorrelation in the error term, is an important statistic. In Chapter 6 on

autocorrelation we will see how we interpret this statistic. Suffice to note here that if

there is no autocorrelation the value of the Durbin–Watson statistic is about 2;12 the

closer it is to zero, the greater the evidence of autocorrelation.
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Dependent Variable: RGDP
Method: Least Squares
Sample: 1960 2007
Included observations: 48

Coefficient Std. Error t-Statistic Prob.

C 1664.218 131.9990 12.60781 0.0000

TIME 186.9939 4.689886 39.87174 0.0000

R-squared 0.971878 Mean dependent var 6245.569
Adjusted R-squared 0.971267 S.D. dependent var 2655.520
S.E. of regression 450.1314 Akaike info criterion 15.09773
Sum squared resid 9320440. Schwarz criterion 15.17570
Log likelihood –360.3455 Durbin–Watson stat 0.069409
F-statistic 1589.756 Prob(F-statistic) 0.000000

Table 2.7 Trend in Real US GDP, 1960–2007.

12 As we will show in Chapter 6, this statistic is based on several assumptions.



2.4 Lin-log models

In the log-lin, or growth, models, we are interested in finding the percent growth in the

regressand for a unit change in the regressor. What about measuring the absolute

change in the regressand for a percentage change in the regressor? If that is the objec-

tive of analysis, we can estimate the following model:

Y B B X ui i i� � �1 2 ln (2.18)

We call Eq. (2.18) a lin-log model, for obvious reasons.

What does the slope coefficient B2 tell us in this model? As we know, the slope coef-

ficient gives the change in Y for a unit change in the regressor. So,

B
Y

X

Y
2 � �

Absolute changein

Changein

Absolute changein

Rln elative changein X
(2.19)

Remember that a change in the log of a number is a relative change, or percentage

change, after multiplication by 100.

Letting % denote a small change, we can write (2.19) as

B
Y

X X
2 �

%
% /

(2.20)

Or,

% %Y B X X� 2 ( / ) (2.21)

Equation (2.21) states that the absolute change in Y (� %Y) is equal to slope times

the relative change in X. Thus, if (%X X/ ) changes by 0.01 unit (or 1%), the absolute

change in Y is 0.01(B2). If in an application one finds B2 = 200, the absolute change in Y

is (0.01)(200) = 2.

Therefore, when we estimate an equation like (2.18), do not forget to multiply the

value of the estimated slope coefficient by 0.01 or (what amounts to the same thing)

divide it by 100. If you do not follow this procedure, you may be drawing misleading con-

clusions from your results.

The lin-log model has been used in Engel expenditure functions, named after the

German statistician Ernst Engel (1821–1896). Engel postulated that “the total expen-

diture that is devoted to food tends to increase in arithmetic progression as total ex-

penditure increases in geometric proportion”.13 Another way of expressing this is that

the share of expenditure on food decreases as total expenditure increases.

To shed light on this, Table 2.8 gives data on food and nonalcoholic beverages con-

sumed at home (Expfood) and total household expenditure (Expend), both in dollars,

for 869 US households in 1995.14 This table can be found on the companion website.

Regression of the share of food expenditure (SFDHO) in total expenditure gives

Table 2.9.

34 The linear regression model

13 This quote is attributed to H. Working (1943) Statistical laws of family expenditure, Journal of the

American Statistical Association, vol. 38, pp. 43–56.

14 This is a random sample from data collected for about 5,000 households in the Quarterly Interview

Survey of the Consumer Expenditure Survey conducted by the US Department of Labor, Bureau of Labor

Statistics. The data used here are discussed in Christopher Dougherty, Introduction to Econometrics, 3rd

edn, Oxford University Press.



All the estimated coefficents are individually highly statistically significant. The in-

terpretation of the slope coefficient of about –0.08 is that if total expenditure increases

by 1%, on average, the share of expenditure on food and nonalcoholic beverages goes

down by about 0.0008 units, thus supporting the Engel hypothesis. This can be seen

more clearly in Figure 2.2. (Note: Do not forget to divide the slope coefficient by 100).

Alternatively, the slope coefficient can be interpreted as: If total expenditure increases

by 100%, on average, the share of expenditure on food and nonalcoholic beverages

goes down by about 0.08 units.

Although we have fitted a lin-log model, Figure 2.2 shows that the relationship be-

tween SFDHO and log (EXPEND) seems nonlinear. There are methods of capturing
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Dependent Variable: SFDHO
Method: Least Squares
Sample: 1 869
Included observations: 869

Coefficient Std. Error t-Statistic Prob.

C 0.930387 0.036367 25.58359 0.0000

LOG(EXPEND) –0.077737 0.003591 –21.64822 0.0000

R-squared 0.350876 Mean dependent var 0.144736
Adjusted R-squared 0.350127 S.D. dependent var 0.085283
S.E. of regression 0.068750 Akaike info criterion –2.514368
Sum squared resid 4.097984 Schwarz criterion –2.503396
Log likelihood 1094.493 Durbin–Watson stat 1.968386
F-statistic 468.6456 Prob(F-statistic) 0.000000

Note: SFDHO = share of expenditure on food and nonalcoholic beverages in the total
expenditure and Expend = total household expenditure.

Table 2.9 Lin-log model of expenditure on food.

Figure 2.2 SFDHO and log of expenditure.



nonlinear relationships among variables, such as the reciprocal models or polynomial

regression models, which we now discuss.

2.5 Reciprocal models

Sometimes we come across situations where the relationship between the regressand

and regressor(s) is reciprocal or inverse, as in the following regression model:

Y B B
X

ui
i

i� �
�

 
!!

"

#
$$ �1 2

1
(2.22)

This model is nonlinear in X because it enters the model inversely or reciprocally, but

it is an LRM because the parameters, the Bs, are linear.

Some of the properties of this model are as follows. As X increases indefinitely, the

term B Xi2 1( / ) approaches zero (note: B2 is a constant) and Y approaches the limiting

or asymptotic value B1. The slope of Eq. (2.22) is given by
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Therefore, if B2 is positive, the slope is negative throughout, and if B2 is negative, the

slope is positive throughout.

Illustrative example: food expenditure revisited

In the previous section we fitted the lin-log model to food expenditure in relation to

total expenditure. Let us see if the reciprocal model can also be fitted to the same data.

So we estimate (Table 2.10)

SFDHO = B B
Expend
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$$ � (2.23)

36 The linear regression model

Dependent Variable: SFDHO
Method: Least Squares
Sample: 1 869
Included observations: 869

Coefficient Std. Error t-Statistic Prob.

C 0.077263 0.004012 19.25950 0.0000

1/EXPEND 1331.338 63.95713 20.81610 0.0000

R-squared 0.333236 Mean dependent var 0.144736
Adjusted R-squared 0.332467 S.D. dependent var 0.085283
S.E. of regression 0.069678 Akaike info criterion –2.487556
Sum squared resid 4.209346 Schwarz criterion –2.476584
Log likelihood 1082.843 Durbin–Watson stat 1.997990
F-statistic 433.3100 Prob(F-statistic) 0.000000

Table 2.10 Reciprocal model of food expenditure.



Interpretation of the results
Both regression coefficients are statistically highly significant, for their p values are

practically zero. The intercept value of about 0.08 suggests that if total expenditure in-

creases indefinitely, the share of food and nonalcoholic expenditure in total expendi-

ture will eventually settle down to about 8%. The slope coefficient B2 is positive,

suggesting that the rate of change of SFDHO with respect to total expenditure will be

negative throughout. This can be seen more vividly from Figure 2.3.

If you compare Figures 2.2 and 2.3, you will see that they are similar in appearance.

The practical question is: which is a better model – lin-log or reciprocal?

This is a common problem in empirical work – the choice of the appropriate model.

Since both models fit the data reasonably well, it is hard to choose between the two. On

the basis of the R2 criterion, the lin-log model gives a slightly higher value, but the dif-

ference in the two R2s is not very large. Incidentally note that we can compare the two

R2 values because the dependent variable in the two models is the same.

2.6 Polynomial regression models

Let us revisit the linear trend model considered in Eq. (2.17) in which we regressed real

GDP (RGDP) on the trend variable, time. Now consider the following model:

RGDP A A time A time ut t� � � �1 2 3
2 (2.24)

Equation (2.24) is an example of a quadratic function, or more generally, a

second-degree polynomial in the variable time. If we had added time3 to the model, it

would have been a third-degree polynomial equation, the highest power of the

regressor representing the degree of the polynomial.

The first point to note about Eq. (2.24) is that it is an LRM, that is, linear in the

parameters, although the time variable enters the model linearly as well as

quadratically. Second, the variables time and time2 are functionally related and will be
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Figure 2.3 Share of food expenditure in total expenditure.



highly correlated. Will this create the collinearity problem, which will violate one of

the assumptions of the CLRM that there are no exact linear relationships among the

regressors? No, because time2 is a nonlinear function of time.

Using the data on RGDP, we obtained the results in Table 2.11.

First, notice that all the estimated coefficients are statistically significant, assuming

the usual assumptions of the classical models hold. How do we interpret these results?

In Eq. (2.17) with only the time variable as regressor, the coefficient of time was about

186.99, suggesting that RGDP was increasing by a constant amount of $186.99 billion

per year.

But for the quadratic model RGDP is increasing at an increasing rate because both

the coefficients of time and time-squared are positive. To see this differently, for the

quadratic model given in Eq. (2.24), the rate of change of RGDP is given as

d

d

RGDP

time
A A time� �2 32 (2.25)

which is positive because both A2 and A3 are positive.

Note: The left-hand side of this equation is the derivative of RGDP with respect to

time.

Using the results in Table 2.11, we obtain:

d

d

RGDP

t
time

time

� �

� �

6853 2 2 42

6853 484

. ( . )

. .

(2.26)

As Eq. (2.26) shows, the rate of change of RGDP depends on the time at which the

rate of change is measured. This is in strong contrast to the linear trend model, Eq.

(2.17), which showed a constant rate of change of about $187 billion per year.15

38 The linear regression model

Dependent Variable: RGDP
Method: Least Squares
Sample: 1960 2007
Included observations: 48

Coefficient Std. Error t-Statistic Prob.

C 2651.381 69.49085 38.15439 0.0000

TIME 68.53436 6.542115 10.47587 0.0000

TIME^2 2.417542 0.129443 18.67647 0.0000

R-squared 0.996787 Mean dependent var 6245.569
Adjusted R-squared 0.996644 S.D. dependent var 2655.520
S.E. of regression 153.8419 Akaike info criterion 12.97019
Sum squared resid 1065030. Schwarz criterion 13.08714
Log likelihood –308.2845 Durbin–Watson stat 0.462850
F-statistic 6979.430 Prob(F-statistic) 0.000000

Table 2.11 Polynomial model of US GDP, 1960–2007.

15 If you take the second derivative of Eq. (2.24) with respect to time, you will obtain the value of 4.84. So

it is the rate of change of the rate of change that is constant over time. (Note that the positive second

derivative implies that the RGDP is increasing at an increasing rate.)



Log-lin model with quadratic trend variable

Suppose instead of estimating Eq. (2.24) that we estimate the following model:

ln RGDP B B t B t ut t� � � �1 2 3
2 (2.27)

The regression results of this model are shown in Table 2.12.

It is interesting to note that in Table 2.11 the trend and trend-squared coefficients

are positive, whereas in Table 2.12 the trend coefficient is positive but the

trend-squared term is negative. This suggests that although the rate of growth of

RGDP is positive, it is increasing at a decreasing rate. To see this clearly, differentiating

Eq. (2.27) with respect to time, we obtain (after suppressing the error term)

d

d

ln RGDP

t
B B t� �2 32 (2.28)16

That is,

1
22 3

RGDP

RGDP

t
B B t

d
� � (2.29)

But the left-hand side of this equation is the rate of growth of RGDP.

Rate of growth of RGDP B B t

t

� �

� �

2 32

0 0365 0 0002. .
(2.30)

As Eq. (2.30) shows, the rate of growth of RGDP decreases at the rate of 0.0002 per

unit of time.

Notice carefully that in Eq. (2.24) we are measuring the rate of change in RGDP, but

in Eq. (2.27) we are measuring the rate of growth in RGDP. Dimensionally, these are

different measures.
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Dependent Variable: LRGDP
Method: Least Squares
Sample: 1960 2007
Included observations: 48

Coefficient Std. Error t-Statistic Prob.

C 7.833480 0.012753 614.2239 0.0000

TIME 0.036551 0.001201 30.44292 0.0000

TIME^2 –0.000103 2.38E-05 –4.348497 0.0001

R-squared 0.996095 Mean dependent var 8.647157
Adjusted R-squared 0.995921 S.D. dependent var 0.442081
S.E. of regression 0.028234 Akaike info criterion –4.236106
Sum squared resid 0.035873 Schwarz criterion –4.119156
Log likelihood 104.6665 Durbin–Watson stat 0.471705
F-statistic 5738.826 Prob(F-statistic) 0.000000

Table 2.12 Polynomial model of log US GDP, 1960–2007.

16 Recall that d d d dln / ( / ) /Y X Y Y X� 1 , which is a relative change in Y. If it is multiplied by 100, it will

become percentage change in Y or the growth rate in Y. The point to keep in mind is that the change in the

log of a variable is a relative change.



2.7 Choice of the functional form

The practical problem in doing empirical work is to decide on the functional form of

the regression model that may be appropriate in a given situation. In the two-variable

regression model this choice is very often not difficult because we can always plot the

regressand and the (single) regressor and visually decide the functional form. But

when it comes to the multiple regression models this choice is not easy, for it is diffi-

cult to draw a multi-dimensional plot.

In practice, therefore, we need to know the properties of the models we have dis-

cussed in this chapter. One way of accomplishing this is to consider the slope and the

elasticity coefficients of the various models, which are summarized in Table 2.13.

If there is more than one regressor in the model, one can compute the partial slope

and partial elasticity coefficients, holding other variables in the model constant.17

2.8 Comparing linear and log-linear models

A frequently encountered problem in research is the choice between linear and

log-linear models.18 Consider our discussion about the production function for the

US economy. Equation (2.4) is an example of a log-linear production function, the

Cobb–Douglas function, whereas Eq. (2.6) is an example of a linear production func-

tion. Which is a better model for the data given in Table 2.1? We have already given

the results of fitting these models in Tables 2.2 and 2.3, respectively.

On their own, both models fit the data well. But we cannot directly compare the two

models, for the dependent variables in the two models are different. But a simple

40 The linear regression model

Model Form Slope Elasticity
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Note: * indicates that the elasticity coefficient is variable, depending on the values taken
by X or Y or both. If no X and Y are specified, these elasticities are often evaluated at the
mean values of X and Y, namely X andY .

Table 2.13 Summary of functional forms.

17 For example, for the model Y B B X B X� � �1 2 3
2, the slope coefficient is d dXY B B X/ � �2 32 and the

elasticity coefficient is( / )( / ) ( )( / )d dXY X Y B B X X Y� �2 32 and this elasticity will depend on the values of X and Y .

18 In the log-linear model the regressand is in log form, but the regressors could be in log form or linear form.



transformation of the dependent variable can render the two models comparable. We

proceed as follows:

Step 1: Compute the geometric mean (GM) of the dependent variable; call it

Q*.19 For the data in Table 2.1, the GM of the output variable is

e16 94139 22842628. � .

Step 2: Divide Qi by Q* to obtain: ( / *)
~

Q Q Qi i�

Step 3: Estimate Eq. (2.4) using
~
Qi in lieu of Qi as the dependent variable (i.e.

use ln
~
Qi as the dependent variable).

Step 4: Estimate Eq. (2.6) using
~
Qi as the dependent variable instead of Qi.

The dependent variables thus transformed are now comparable. Run the trans-

formed regressions, obtaining their residual sum of squares (RSS) (say RSS1 for the

linear model and RSS2 for the log-linear model) and choose the model that has the

lowest RSS. To save space, we will not reproduce the results of these transformed re-

gressions except for the following statistics:

RSS

log-linear model 3.4155

linear model 3.6519

Since the RSS of the log-linear model is lower, we may choose it over the linear

model, although the two RSS are quite close. But a more formal test is available.

If the null hypothesis is that both models fit the data equally well, we can compute20
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2ln ~ (2.31)

where RSS1 is the RSS from the linear model and RSS2 is the RSS from the log-linear

model. If the computed �(lambda) exceeds the critical chi-square value for 1 df, we can

reject the null hypothesis and conclude that it is the log-linear production function

that is a better model. If, however, the computed � is less than the critical value, we fail

to reject the null hypothesis, in which case both models perform equally well.21

For our example, it can be shown that �= 74.2827. The 5% critical chi-square value

for 1 df. is 3.841. Since the computed chi-square value of 74.2827 is much greater than

the critical chi-square value, we can conclude that the log-linear model performs

better than the linear model.

Since the log-linear model is easy to interpret in terms of elasticities of labor and

capital and the returns to scale parameter, we may choose that model in practice.

2.9 Regression on standardized variables

In the various examples discussed so far the regressand and regressors were not neces-

sarily expressed in the same unit of measurement. Thus in the Cobb–Douglas
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19 The geometric mean of Y1 and Y2 is ( ) /YY1 2
1 2, the GM of Y1, Y2 and Y3 is ( ) /YY Y1 2 3

1 3and so on.

20 See Gary Koop, Introduction to Econometrics, John Wiley & Sons Ltd, England, 2008, pp. 114–15.

21 If RSS2 > RSS1, put the former in the numerator of Eq. (2.31) and RSS1 in the denominator. The null

hypothesis here is that both models perform equally well. If this hypothesis is rejected, then it is the linear

model that is preferable to the log-linear model.



production function discussed earlier output, labor input and capital input were mea-

sured in different units of measurement. This affects the interpretation of regression

coefficients, because the size of the (partial) regression coefficient depends on the

units of measurement of the variable.

But this problem can be avoided if we express all variables in the standardized form.

In the standardized form we express the value of each variable as deviation from its

mean value and divide the difference by the standard deviation of that variable, such as

Y
Y Y

S
X

X X

S
i

i

Y
i

i

X

* *;�
�

�
�

(2.32)

where SY and SX are the sample standard deviations andY and X are the sample means

of Y and X, respectively. Yi
* and Xi

* are called standardized variables.

It is easy to prove that the mean value of a standardized variable is always zero and

its standard deviation value is always 1, no matter what its original mean and standard

deviation values are. It is also interesting to note that the standardized variables are

what are called pure (i.e. unit-free) numbers. This is because the numerator and de-

nominator of the standardized variables are measured in the same unit of

measurement.

If you now run the following regression:

Y B B X ui i i
* * * * *� � �1 2 (2.33)

you will find that b1
* is zero.22

The starred regression coefficients are called the beta coefficients, or standardized

coefficients, whereas the regression coefficients of unstandardized variables are called

unstandardized coefficients.

The slope coefficient in this regression is interpreted as follows: if the standardized

regressor increases by one standard deviation unit, on average, the standardized

regressand increases by B2
* standard deviation units. The point to remember is that,

unlike the usual OLS regression, we measure the impact of a regressor not in terms of

the original units in which Y and X are measured, but in standard deviation units.

It should be added that if we have more than one regressor, we can standardize all

the regressors. To illustrate, we revisit the linear production function for the USA con-

sidered earlier (see Table 2.3) and reestimate it using standardized output, labor and

capital variables. The results are shown in Table 2.14.

As expected, the intercept term is zero. The two standardized variables have indi-

vidually significant impacts on (standardized) output. The interpretation of a coeffi-

cient of about 0.40 is that if the labor input increases by one standard deviation unit,

the average value of output goes up by about 0.40 standard deviation units, ceteris pa-

ribus. The interpretation of the capital coefficient of about 0.60 is that if the capital

input increases by one standard deviation unit, on average, output increases by about

0.60 standard deviation units. Relatively speaking, capital has more impact on output

than labor. The regression coefficients in Table 2.3, by contrast, are unstandardized

coefficients.
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22 Note that: b Y b X1 2
* * *� � , but the mean values of the standardized variables are zero, so bi

* is zero ipso

facto.



If you look at the results shown in Table 2.3, you might think that labor has rela-

tively more impact on output than capital. But since labor and capital are measured in

different units of measurement, such a conclusion would be misleading. But in a re-

gression on standardized variables, it may be easier to assess the relative importance of

the various regressors, because by standardizing we put all regressors on an equal

footing.

But note that whether we use standardized or unstandardized variables, the t, F, and

R2 values remain the same, thus not affecting statistical inference.

2.10 Measures of goodness of fit

If you look at the various computer printouts given in the preceding tables, you will ob-

serve that there are several measures of “goodness of fit” of the estimated model; that

is, how well the model explains the variation in the regressand. These measures in-

clude: (1) coefficient of determination, R2, (2) adjusted R2, usually denoted by R 2 , (3)

Akaike’s Information Criterion, and (4) Schwarz’s Information Criterion.

1 R2 measure

As noted earlier, this measures the proportion of the variation in the regressand ex-

plained by the regressors. It lies between 0 and 1, 0 indicating complete lack of fit and 1

indicating a perfect fit. R2 usually lies within these limits; the closer it is to 0, worse is

the fit, and the closer it is to 1, the better is the fit. A drawback of this measure is that by

including more regressors in the model we can generally increase the R2 value. This is

because R2 is an increasing function of the number of regressors in the model.

Although we have defined R2 as the ratio of ESS to TSS, it can also be computed as

the squared correlation coefficient between the actual Y and the estimated Y (= �Y)

from the regression model, where Y is the regressand, that is:

r
y y

y y

i i

i i
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2

2 2
�
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� �
(2.34)
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Dependent Variable: OUTPUTSTAR
Method: Least Squares
Sample: 1 51
Included observations: 51

Coefficient Std. Error t-Statistic Prob.

C 2.52E–08 0.019666 1.28E–06 1.0000

LABORSTAR 0.402388 0.059185 6.798766 0.0000

CAPITALSTAR 0.602185 0.059185 10.17455 0.0000

R-squared 0.981065 Mean dependent var 5.24E-09
Adjusted R-squared 0.980276 S.D. dependent var 1.000000
S.E. of regression 0.140441 Akaike info criterion –1.031037
Sum squared resid 0.946735 Schwarz criterion –0.917400
Log likelihood 29.29145 Durbin–Watson stat 1.684519
F-statistic 1243.514 Prob(F-statistic) 0.000000

Note: STAR variables are standardized variables.

Table 2.14 Linear production function using standardized variables.



where y Y Yi i� �( ) and � ( � )y Y Yi i� � .

2 Adjusted R2

We have already discussed the adjusted R2 (= R 2 ). The adjusted R2 is used to compare

two or more regression models that have the same dependent variable, but differing

numbers of regressors. Since the adjusted R2 is usually smaller than the unadjusted R2,

it seems it imposes a penalty for adding more regressors to the model.

3 Akaike’s Information Criterion (AIC)

Like the adjusted R2, the AIC criterion adds a somewhat harsher penalty for adding

more variables to the model. In its logarithmic form, AIC is defined as follows:

ln lnAIC � � �
 
!

"
#
$

2k

n

RSS

n
(2.35)

where RSS = residual sum of squares and 2k n/ is the penalty factor.

The AIC criterion is useful in comparing two or more models. The model with the

lowest AIC is usually chosen. The AIC criterion is also used for both in-sample and

out-of-sample forecasting performance of a regression model.

4 Schwarz’s Information Criterion (SIC)

This is an alternative to the AIC criterion, which in its log form can be expressed as:

ln ln lnSIC � � �
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n
(2.36)

The penalty factor here is [( / )ln ]k n n , which is harsher than that of AIC. Like AIC, the

lower the value of SIC, the better the model. Also, like AIC, SIC can be used to com-

pare in-sample or out-of-sample forecasting performance of a model.

It should be added that the idea behind adding the penalty factor is Occam’s razor,

according to which “descriptions should be kept as simple as possible until proved in-

adequate”. This is also known as the principle of parsimony.

On the basis of this principle, which is a better criterion, AIC or SIC? Most often

both these criteria select the same model, but not always. On theoretical grounds, AIC

may be preferable, but in practice one may choose the SIC criterion, for it may select a

more parsimonious model, other things remaining the same.23 Eviews presents both

these criteria.

If you compare the linear trend model given in Table 2.7 with the quadratic trend

model given in Table 2.12, you will find that for the linear model the Akaike value is

15.0 and for the quadratic model it is –4.23. Here you would choose the quadratic

trend model. On the basis of the Schwarz criterion, these values are 15.17 for the linear

trend model and –4.12 for the quadratic trend model. Again, you would choose the

latter model on the basis of this criterion. However, for the quadratic trend model, the

Akaike value of –4.23 is more negative than the Schwarz value of –4.12, giving Akaike

a slight edge in the choice.

It may be interesting to note that for the LRM both these criteria are related to the

F test as follows: “For a large enough sample size n, the comparison of AIC values

44 The linear regression model

23 For a discussion about the relative merits of the various model selection criteria, see Francis X.

Diebold, Elements of Forecasting, 3rd edn, Thomson/South-Western Publishers, 2004, pp. 87–90.



corresponds to an F test with critical value 2 and SIC corresponds to an F test with

critical value log(n).”24

If we are dealing with nonlinear-in-parameter regression models, estimated by the

method of maximum likelihood (ML), the goodness of fit is measured by the likelihood

ration (LR) statistic �, which is explained in the Appendix to Chapter 1, which dis-

cusses the ML method. In Part III we will discuss models in which we use the LR

statistic.

2.11 Summary and conclusions

In this chapter we considered a variety of linear regression models – that is, models

that are linear in the parameters or can be made linear with suitable transformations.

Each model is useful in specific situations. In some applications more than one model

may fit the data. We discussed the unique features of each model in terms of slope and

elasticity coefficients.

In comparing two or more models on the basis of R2 we pointed out that the de-

pendent variable in these models must be the same. In particular, we discussed the

choice between a linear and a log-linear model, two of the commonly used models in

research.

Although we have discussed the various models in terms of two-variable or

three-variable linear regression models for expository purposes, they can be easily ex-

tended to regression models involving any number of regressors.25 We can also have

models in which some regressors are linear and some are log-linear.

We briefly discussed the role of standardized variables in regression analysis. Since

a standardized variable has zero mean and unit standard deviation, it is easier to com-

pare the relative influence of various regressors on the regressand.

We can evaluate a model in terms of the expected signs of the regression coeffi-

cients, their statistical significance in terms of the t value of the coefficients, or the F

test if we are interested in the joint significance of two or more variables. We can judge

the overall performance of a model in terms of R2. If we are comparing two or more re-

gression models, we can use the adjusted R2 or the Akaike or Schwarz information

criteria.

In this chapter we also discussed how we can incorporate linear restrictions in esti-

mating regression models. Such restrictions are often suggested by economic theory.

Exercises

2.1 Consider the following production function, known in the literature as the tran-

scendental production function (TPF).

Q B L K ei i
B

i
B B L B Ki i� �

1
2 3 4 5

where Q, L, and K represent output, labor, and capital, respectively.

(a) How would you linearize this function? (Hint: logarithms.)

Functional forms of regression models 45

I

24 See Christiaan Heij, Paul de Boer, Philip Hans Franses, Teun Kloek, and Herman K. van Dijk,

Econometrics Methods with Applications in Business and Economics, Oxford University Press, Oxford, UK,

2004, p. 280.

25 To handle such multivariable regression models, we need to use matrix algebra.



(b) What is the interpretation of the various coefficients in the TPF?

(c) Given the data in Table 2.1, estimate the parameters of the TPF.

(d) Suppose you want to test the hypothesis that B4 = B5 = 0. How would you

test these hypotheses? Show the necessary calculations. (Hint: restricted

least squares.)

(e) How would you compute the output–labor and output–capital elasticities

for this model? Are they constant or variable?

2.2 How would you compute the output–labor and output–capital elasticities for

the linear production function given in Table 2.3?

2.3 For the food expenditure data given in Table 2.6, see if the following model fits

the data well:

SFDHOi = B1 + B2 Expendi + B3 Expendi
2

and compare your results with those discussed in the text.

2.4 Would it make sense to standardize variables in the log-linear Cobb–Douglas

production function and estimate the regression using standardized variables? Why or

why not? Show the necessary calculations.

2.5 Show that the coefficient of determination, R2, can also be obtained as the

squared correlation between actual Y values and the Y values estimated from the re-

gression model (= �Yi ), where Y is the dependent variable. Note that the coefficient of

correlation between variables Y and X is defined as:

r
y x

x y

i i

i i

�
�

� �2 2

where y Y Y x X Xi i i i� � � �; . Also note that the mean values of Yi and �Y are the same,

namely, Y .

2.6 Table 2.15 gives cross-country data for 83 countries on per worker GDP for 1997

and Corruption Index for 1998.26

(a) Plot the index of corruption against per worker GDP.

(b) Based on this plot what might be an appropriate model relating corruption

index to per worker GDP?

(c) Present the results of your analysis.

(d) If you find a positive relationship between corruption and per capita GDP,

how would you rationalize this outcome?
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26 Source: http://www.transparency.org/pressreleases_archive/1998/1998.09.22.cpi.html (for corruption

index; Source: http://www.worldbank.org/research/growth/ (for per worker GDP).



3
Qualitative explanatory variables

regression models1

Most of the linear regression models we have discussed so far involved a quantitative

regressand and quantitative regressors. We will continue to assume that the

regressand is quantitative, but we will now consider models in which the regressors

are quantitative as well as qualitative. In Chapter 8 we will consider regressands that

are also qualitative in nature.

In regression analysis we often encounter variables that are essentially qualitative in

nature, such as gender, race, color, religion, nationality, geographical region, party af-

filiation, and political upheavals. For example, in the wage function we discussed in

Chapter 1, we had gender, union affiliation, and minority status among the regressors

because these qualitative variables play an important role in wage determination.

These qualitative variables are essentially nominal scale variables which have no

particular numerical values. But we can “quantify” them by creating so-called dummy

variables, which take values of 0 and 1, 0 indicating the absence of an attribute and 1

indicating its presence. Thus the gender variable can be quantified as female = 1 and

male = 0, or vice versa. In passing, note that dummy variables are also called indicator

variables, categorical variables, and qualitative variables.

In this chapter we show how the dummy variables can be handled within the frame-

work of the classical linear regression model (CLRM). For notational convenience, we

will indicate the dummy variables by the letter D.

To set the stage, we start with a concrete example.

3.1 Wage function revisited

In Chapter 1 we considered the determination of hourly wage for a cross-section of

1,289 persons based on the data obtained from the Current Population Survey (CPS)

for March 1995. The variables used in the analysis and the regression results are given

in Table 1.2.

Let us write the wage function in a different format to emphasize the role of dummy

variables in the regression.

Wage B B D B D B D B Educ B Exper ui i i i i i i� � � � � � �1 2 2 3 3 4 4 5 6 (3.1)
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1 For more details, see Gujarati/Porter, op cit., Chapter 9.



where D2i = 1 if female, 0 for male; D3i = 1 for nonwhite, 0 for white; and D4i = 1 if

union member, 0 for non-union member, where the Ds are the dummy variables.

For convenience, we are reproducing the results of the regression given in Table

1.2, using the notation given in Eq. (3.1) (Table 3.1).

Before we interpret the dummy variables, some general comments about these vari-

ables are in order.

First, if an intercept is included in the model and if a qualitative variable has m cate-

gories, then introduce only (m – 1) dummy variables. For example, gender has only two

categories; hence we introduce only one dummy variable for gender. This is because if

a female gets a value of 1, ipso facto a male get a value of zero. Of course, if an attribute

has only two categories, it does not matter which category gets the value of 1 or zero.

So we could code male as 1 and female as 0.

If, for example, we consider political affiliation as choice among Democratic, Re-

publican, and Independent parties, we can have at most two dummy variables to rep-

resent the three parties. If we do not follow this rule, we will fall into what is called the

dummy variable trap, that is, the situation of perfect collinearity. Thus, if we have

three dummies for the three political parties and an intercept, the sum of the three

dummies will be 1, which will then be equal to the common intercept value of 1, lead-

ing to perfect collinearity.2

Second, if a qualitative variable has m categories, you may include m dummies, pro-

vided you do not include the (common) intercept in the model. This way we do not fall

into the dummy variable trap.

Third, the category that gets the value of 0 is called the reference, benchmark or

comparison category. All comparisons are made in relation to the reference category,

as we will show with our example.

48 The linear regression model

Dependent Variable: WAGE
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –7.183338 1.015788 –7.071691 0.0000

FEMALE –3.074875 0.364616 –8.433184 0.0000

NONWHITE –1.565313 0.509188 –3.074139 0.0022

UNION 1.095976 0.506078 2.165626 0.0305

EDUCATION 1.370301 0.065904 20.79231 0.0000

EXPER 0.166607 0.016048 10.38205 0.0000

R-squared 0.323339 Mean dependent var 12.36585
Adjusted R-squared 0.320702 S.D. dependent var 7.896350
S.E. of regression 6.508137 Akaike info criterion 6.588627
Sum squared resid 54342.54 Schwarz criterion 6.612653
Log likelihood –4240.370 Durbin–Watson stat 1.897513
F-statistic 122.6149 Prob(F-statistic) 0.000000

Table 3.1 A model of wage determination.

2 Note that including an intercept in the model is equivalent to including a regressor in the model whose

value is always one.



Fourth, if there are several dummy variables, you must keep track of the reference

category; otherwise, it will be difficult to interpret the results.

Fifth, at times we will have to consider interactive dummies, which we will illus-

trate shortly.

Sixth, since dummy variables take values of 1 and 0, we cannot take their loga-

rithms. That is, we cannot introduce the dummy variables in log form.3

Seventh, if the sample size is relatively small, do not introduce too many

dummy variables. Remember that each dummy coefficient will cost one degree of

freedom.

Interpretation of dummy variables

Returning to the wage function given in Table 3.1, let us interpret the female dummy

coefficient of –3.0748. Its interpretation is that the average hourly salary of a female

worker is lower by about $3.07 as compared to the average salary of a male worker,

which is the reference category here, of course holding all other variables constant.

Similarly, the average hourly wage of union workers is higher by about $1.10 as com-

pared to the average pay of non-union workers, which is the reference category. Like-

wise, the average hourly wage of a nonwhite worker is lower by about –$1.57 than a

white worker, which is the reference category.

In passing, note that all the dummy coefficients are individually statistically

highly significant, for their p values are practically 0. These dummy coefficients are

often called differential intercept dummies, for they show the differences in the

intercept values of the category that gets the value of 1 as compared to the refer-

ence category.

What does the common intercept value of about –7.18 denote? It is the expected

hourly wage for white, non-union, male worker. That is, the common intercept value

refers to all those categories that take a value of 0. Of course, this is the mechanical in-

terpretation of the intercept term.4 As we have remarked on several occasions, a nega-

tive intercept value very often does not have a viable economic interpretation.

The interpretation of the quantitative regressors is straightforward. For example,

the education coefficient of 1.37 suggests that holding all other factors constant, for

every additional year of schooling the average hourly wage goes up by about $1.37.

Similarly, for every additional year of work experience, the average hourly wage goes

up by about $0.17, ceteris paribus.

3.2 Refinement of the wage function

We have found that the average salary of a female worker is lower than that of her male

counterpart and we also found that the average salary of a nonwhite worker is lower

than that of his white counterpart. Is it possible that the average salary of a female non-

white worker is different from the average salary of a female worker alone or a non-

white worker alone? If that turns out to be the case, does it say something about

possible discrimination against nonwhite female workers?
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4 Basically, it shows where the regression line (or plane) lies along the Y-axis, which represents the

dependent variable.



To find this out, we reestimate the wage function by adding to it the product of the

female and nonwhite dummies. Such a product is called an interactive dummy, for it

interacts the two qualitative variables. Adding the interactive dummy, we obtain the

results in Table 3.2.

The coefficient of the interactive dummy (D2 × D3) is about 1.10, but it is not statis-

tically significant, for its p value is about 28%.

But how do we interpret this value? Ceteris paribus, being a female has a lower aver-

age salary by about $3.24, being a nonwhite has a lower average salary by about $2.16

and being both has an average salary lower by about $4.30 (= –3.24 – 2.16 + 1.10). In

other words, compared to the reference category, a nonwhite female earns a lower av-

erage wage than being a female alone or being a nonwhite alone.

We leave it for the reader to find out if a female union worker or a nonwhite union

worker earns an average wage that is different from the reference category. You can

also interact female and union dummies, female and experience dummies, nonwhite

and union dummies, and nonwhite and experience dummies.

3.3 Another refinement of the wage function

We implicitly assumed that the slope coefficients of the quantitative regressors, edu-

cation, and experience, remain the same between male and female, and between white

and nonwhite wage earners. For example, this assumption would imply that for every

additional year of schooling or every additional year of work experience, male and

female workers earn the same incremental amount of hourly wage. Of course this is an

assumption. But with dummy variables, we can test this assumption explicitly.

Let us express the wage function as follows:

50 The linear regression model

Dependent Variable: WAGE
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –7.088725 1.019482 –6.953264 0.0000

D2(Gender) –3.240148 0.395328 –8.196106 0.0000

D3(Race) –2.158525 0.748426 –2.884087 0.0040

D4(Union) 1.115044 0.506352 2.202113 0.0278

EDUC 1.370113 0.065900 20.79076 0.0000

EXPERI 0.165856 0.016061 10.32631 0.0000

D2*D3(GenderRace) 1.095371 1.012897 1.081424 0.2797

R-squared 0.323955 Mean dependent var 12.36585
Adjusted R-squared 0.320791 S.D. dependent var 7.896350
S.E. of regression 6.507707 Akaike info criterion 6.589267
Sum squared resid 54293.02 Schwarz criterion 6.617298
Log likelihood –4239.783 Durbin–Watson stat 1.898911
F-statistic 102.3875 Prob(F-statistic) 0.000000

Table 3.2 Wage function with interactive dummies.
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In Eq. (3.2) B2 , B3 , and B4 are differential intercept dummies, as before, and B7

through B11 are differential slope dummies. If, for example, b7, the estimated coeffi-

cient of B7, is statistically significant, it would suggest that the rate of average salary

progression per additional year of education is different for female than the reference

group, which is white male, whose slope coefficient is B5. Other differential slope coef-

ficients are to be interpreted similarly.

The results of regression (3.2) are shown in Table 3.3. Compared to the results in

Tables 3.1 and 3.2, the results in Table 3.3 are revealing. The differential slope coeffi-

cients for females with respect to education and experience are negative and statisti-

cally significant, suggesting that the rate of progression of average hourly wage for

female workers vis à vis male workers is smaller with respect to education and experi-

ence. For nonwhite workers the rate of wage progression with respect to education is

negative and lower than for white workers and it is statistically significant at the 10%

level. The other differential slope coefficients are not statistically significant.

For discussion purposes we will drop the differential slope coefficients D3*EX and

D4*ED and D4*EX. The results are given in Table 3.4.
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Dependent Variable: W
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –11.09129 1.421846 –7.800623 0.0000

D2 3.174158 1.966465 1.614144 0.1067

D3 2.909129 2.780066 1.046424 0.2956

D4 4.454212 2.973494 1.497972 0.1344

ED 1.587125 0.093819 16.91682 0.0000

EX 0.220912 0.025107 8.798919 0.0000

D2*ED –0.336888 0.131993 –2.552314 0.0108

D2*EX –0.096125 0.031813 –3.021530 0.0026

D3*ED –0.321855 0.195348 –1.647595 0.0997

D3*EX –0.022041 0.044376 –0.496700 0.6195

D4*ED –0.198323 0.191373 –1.036318 0.3003

D4*EX –0.033454 0.046054 –0.726410 0.4677

R-squared 0.332811 Mean dependent var 12.36585
Adjusted R-squared 0.327064 S.D. dependent var 7.896350
S.E. of regression 6.477589 Akaike info criterion 6.583840
Sum squared resid 53581.84 Schwarz criterion 6.631892
Log likelihood –4231.285 Durbin–Watson stat 1.893519
F-statistic 57.90909 Prob(F-statistic) 0.000000
Note: The symbol * denotes multiplication.

Table 3.3 Wage function with differential intercept and slope dummies.



From these results we can derive wage functions for male, female and nonwhite,

and non-union workers, which are as follows:

Wage function of white male non-union wage earners:

Wagei
^

= –10.6450 + 1.5658 Educi + 0.2126 Experi (3.3)

Wage function of white non-union female wage earners
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Wage function for nonwhite male non-union workers

Wage Educi i
^

(– . – . ) ( . – . )

.

� �

�

10 6450 2 6269 15658 03293

02126

8 0181 12365 02126

Exper

Educ Exper

i

i i� � �– . . .

(3.5)

Wage function for white male union workers

Wage Educ Experi i i
^
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�
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(3.6)

Of course, there are other possibilities to express the wage function.
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Dependent Variable: W
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –10.64520 1.371801 –7.760020 0.0000

FE 3.257472 1.959253 1.662609 0.0966

NW 2.626952 2.417874 1.086472 0.2775

UN 1.078513 0.505398 2.133988 0.0330

ED 1.565800 0.091813 17.05422 0.0000

EX 0.212623 0.022769 9.338102 0.0000

FE*ED –0.346947 0.131487 –2.638639 0.0084

FE*EX –0.094908 0.031558 –3.007409 0.0027

NW*ED –0.329365 0.186628 –1.764817 0.0778

R-squared 0.331998 Mean dependent var 12.36585
Adjusted R-squared 0.327823 S.D. dependent var 7.896350
S.E. of regression 6.473933 Akaike info criterion 6.580402
Sum squared resid 53647.11 Schwarz criterion 6.616442
Log likelihood –4232.069 Durbin–Watson stat 1.889308
F-statistic 79.52030 Prob(F-statistic) 0.000000

Table 3.4 Reduced wage function.



For example, you may want to interact female with union and education

(female*union*education), which will show whether the females who are educated and

belong to unions have differential wages with respect to education or union status. But

beware of introducing too many dummy variables, for they can rapidly consume degrees

of freedom. In the present example this is not a serious problem, because we have 1,289

observations.

3.4 Functional form of the wage regression

It is common in labor economics to use the logarithm of wages instead of wages as the

regressand because the distribution of wages tends to be highly skewed, which can be

seen from Figure 3.1.

This histogram of wage rates shows that it is right-skewed and is far from the

normal distribution. If a variable is normally distributed, its skewness coefficient (a

measure of symmetry) is 0 and its kurtosis coefficient (a measure of how tall or flat the

normal distribution is) is 3. As the statistics accompanying this figure shows, in the

present case skewness is about 1.85 and kurtosis is about 7.84, both values being far

different than those of a normal distribution. The Jarque–Bera (JB) statistic, which is

based on the skewness and kurtosis measures, will be discussed in Chapter 7. Suffice it

to note here that for a normally distributed variable the value of the JB statistic is ex-

pected to be zero, which is obviously not the case here, for the estimated JB value is

about 1990, which is far from zero and the probability of obtaining such a value is prac-

tically zero.5

On the other hand, the distribution of log of wages shows that it is symmetrical and

normally distributed, as can be seen from Figure 3.2.
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Series: W
Sample 1 1289
Observations 1289

Mean 12.36585
Median 10.08000
Maximum 64.08000
Minimum 0.840000
Std. Dev. 7.896350
Skewness 1.848114
Kurtosis 7.836565

Jarque–Bera 1990.134
Probability 0.000000

Figure 3.1 Distribution of wage rates.

5 Under the hypothesis that a variable is normally distributed, Jarque–Bera have shown that in large

samples the JB statistic follows the chi-square distribution with 2 df.



That is why it is preferable to use the log of wage rates as the regressand. Also, in the

log-transform the problem of heteroscedasticity is usually less severe.

Using the log of wage rate as the regressand (LW), the estimate of Eq. (3.1) is shown

in Table 3.5. This shows that all the estimated coefficients are individually (on the

basis of the t test) as well as collectively (on the basis of the F test) highly significant, be-

cause their p values are so low. But how do we interpret these coefficients?
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Dependent Variable: LW
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C 0.905504 0.074175 12.20768 0.0000

D2 –0.249154 0.026625 –9.357891 0.0000

D3 –0.133535 0.037182 –3.591399 0.0003

D4 0.180204 0.036955 4.876316 0.0000

EDUC 0.099870 0.004812 20.75244 0.0000

EXPER 0.012760 0.001172 10.88907 0.0000

R-squared 0.345650 Mean dependent var 2.342416
Adjusted R-squared 0.343100 S.D. dependent var 0.586356
S.E. of regression 0.475237 Akaike info criterion 1.354639
Sum squared resid 289.7663 Schwarz criterion 1.378666
Log likelihood –867.0651 Durbin–Watson stat 1.942506
F-statistic 135.5452 Prob(F-statistic) 0.000000

Table 3.5 Semi-log model of wages.
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Jarque–Bera 2.789946
Probability 0.247840

Figure 3.2 Distribution of log of wages.



Recall from our discussion of functional forms of regression models in Chapter 2

that in Table 3.5 we are estimating a semi-log model where the wage rate variable is in

the log form whereas the regressors are in linear form. As we know, with respect to the

quantitative variables, education and work experience, their coefficients represent

semi-elasticities – that is, relative (or percentage) change in the wage rate for a unit

change in the regressor. Thus, the education coefficient of 0.0999 suggests that for

every additional year of schooling, the average wage rate goes up by about 9.99%, cet-

eris paribus. Likewise, for every additional year of work experience, the average wage

rate goes up by about 1.3%, ceteris paribus.

What about the dummy coefficients? One could interpret the female dummy coef-

ficient of –0.2492 as suggesting that the average female wage rate is lower by 24.92% as

compared to the male average wage rate. But if one wants to get a correct percentage

change, we have to take the antilog (to base e) of the coefficient of the dummy variable,

subtract 1 from it and multiply the difference by 100.6 Following this procedure, we

find that e–0.2492 = 0.7794. Subtracting 1 from this, we obtain –0.2206. Multiplying

this by 100, we find –22.06%. That is, holding all other variables constant, the female

average wage rate is lower than the male average wage rate by about 22.06%, which is

different from 24.92%.

Therefore, the dummy coefficients given in Table 3.5 can be interpreted as percent-

age changes only as approximations. To get the correct percentage change we have to

follow the procedure just described.

The results of the linear and log-linear regressions given in Tables 3.1 and 3.5 show

that in both cases the coefficients of the regressors are highly significant, although

their interpretations are different. But one important point to remember is that the R2

value given in Table 3.1 (0.3233) and that given in Table 3.5 (0.3457) are not directly

comparable for reasons already discussed in the chapter on functional forms of regres-

sion models. To wit, in the linear model the R2 measures the proportion of the varia-

tion in the regressand explained by all the regressors, whereas in the log-linear model

it measures the proportion of the variation in the log of the regressand. And the two

are not the same. Recall that a change in the log of a variable is a proportional or

relative change.

It is left for the reader to replicate the results of Tables 3.2, 3.3, and 3.4, using log of

wage rate as the regressand.

3.5 Use of dummy variables in structural change

Suppose we want to study the relationship between gross private investments (GPI)

and gross private savings (GPS) in the USA over the period 1959–2007, a span of 49

years. For this purpose let us consider the following investment function:

GPI GPSt t tB B u B� � � �1 2 2 0, (3.7)

where B2 is the marginal propensity to invest (MPI) – that is, additional investment out

of an additional dollar of savings. See Table 3.6 on the companion website.

In 1981–1982 the US suffered its worst peace-time recession, until the severe reces-

sion of 2007–2008. It is quite likely that the investment-savings relationship postu-

lated in Eq. (3.7) may have gone a structural change since then. To see if in fact the US
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6 For a technical discussion, see Gujarati/Porter, op cit., Chapter 9, p. 298.



economy has undergone a structural change, we can use dummy variables to shed light

on this. Before we do that, let us present the results of regression (3.7) without taking

into account any structural breaks. The results are shown in Table 3.7.

These results shows that the MPI is about 1.10, meaning that if GPS increases by a

dollar, the average GPI goes up by about $1.10. The MPI is highly significant, although

we may have to worry about the problem of autocorrelation, which we will address in

another chapter.

To see if there is a structural break, we can express the investment function as:

GPI GPS Recessiont t t tB B B u� � � �1 2 3 81 (3.8)

where Recession81 is a dummy variable taking a value of 1 for observations beginning

in 1981 and 0 before that year. As you will recognize, B3 is a differential intercept, tell-

ing us how much the average level of investment has changed since 1981. The regres-

sion results are shown in Table 3.8.

The recession dummy coefficient is not significant, suggesting that there has been

no statistically visible change in the level of investment pre- and post-1981 recession.

In other words, the results would suggest that there is no structural break in the US

economy. We have to accept this conclusion cautiously, for it is quite likely that not

only the intercept but the slope of the investment–savings regression might have

changed. To allow for this possibility, we can introduce both differential intercept and

differential slope dummies. So we estimate the following model:

GPI GPS Recession81

GPS Recession81

t t

t t

B B B

B u

� � �

� �

1 2 3

4 *
(3.9)

In this equation B3 represents the differential intercept and B4 the differential slope

coefficient; see how we have interacted the dummy variable with the GPS variable.

The results of this regression are shown in Table 3.9. The results in this table are

quite different from those in Table 3.8: now both the differential intercept and slope

coefficients are statistically significant. This means that the investment–savings rela-

tionship has gone structural change since the recession of 1981. From this table we can
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Dependent Variable: GPI
Method: Least Squares
Date: 07/06/10 Time: 15:27
Sample: 1959 2007
Included observations: 49

Variable Coefficient Std. Error t-Statistic Prob.

C –78.72105 27.48474 –2.864173 0.0062

GPS 1.107395 0.029080 38.08109 0.0000

R-squared 0.968607 Mean dependent var 760.9061
Adjusted R-squared 0.967940 S.D. dependent var 641.5260
S.E. of regression 114.8681 Akaike info criterion 12.36541
Sum squared resid 620149.8 Schwarz criterion 12.44262
Log likelihood –300.9524 Hannan–Quinn criter. 12.39470
F-statistic 1450.170 Durbin–Watson stat 0.372896
Prob(F-statistic) 0.000000

Table 3.7 Regression of GPI on GPS, 1959–2007.



derive the investment–savings regressions for the period pre- and post-1981 as fol-

lows:

Investment–savings relationship before 1981

GPI GPSt t
^

. .� � �32 4901 10692

Investment–savings relationship after 1981

GPIt tGPS
^

( . . ) ( . . )� � � � �

� �

32 4901 3278491 10692 02441

360. .3392 13133� GPSt

This example is a reminder that we have to be careful in using the dummy variables.

It should also be added that there might be more than one structural break in the
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Dependent Variable: GPI
Method: Least Squares
Sample: 1959 2007
Included observations: 49

Variable Coefficient Std. Error t-Statistic Prob.

C –32.49016 23.24972 –1.397443 0.1691

GPS 1.069202 0.025916 41.25623 0.0000

DUMMY81 –327.8491 61.75397 –5.308955 0.0000

GPS*DUMMY81 0.244142 0.044594 5.474721 0.0000

R-squared 0.981283 Mean dependent var 760.9061
Adjusted R-squared 0.980035 S.D. dependent var 641.5260
S.E. of regression 90.64534 Akaike info criterion 11.92989
Sum squared resid 369746.0 Schwarz criterion 12.08433
Log likelihood –288.2824 Hannan–Quinn criter. 11.98849
F-statistic 786.4151 Durbin–Watson stat 0.828988
Prob(F-statistic) 0.000000

Table 3.9 Regression of GPI on GPS with interactive dummy.

Dependent Variable: GPI
Method: Least Squares
Sample: 1959 2007
Included observations: 49

Variable Coefficient Std. Error t-Statistic Prob.

C –77.89198 27.72938 –2.809006 0.0073

GPS 1.099832 0.032306 34.04453 0.0000

RECESSION81 6.496153 11.69500 0.555464 0.5813

R-squared 0.968817 Mean dependent var 760.9061
Adjusted R-squared 0.967461 S.D. dependent var 641.5260
S.E. of regression 115.7225 Akaike info criterion 12.39954
Sum squared resid 616017.9 Schwarz criterion 12.51536
Log likelihood –300.7887 Hannan–Quinn criter. 12.44348
F-statistic 714.5717 Durbin–Watson stat 0.385512
Prob(F-statistic) 0.000000

Table 3.8 Regression of GPI on GPS with 1981 recession dummy.



economy. For example, the USA underwent another recession right after the 1973 oil

embargo imposed by the OPEC oil cartel. So we could have another dummy to reflect

that event. The only precaution you have to exercise is that if you do not have a large

enough samples, introducing too many dummy variables will cost you several degrees

of freedom. And as the degrees of freedom dwindle, statistical inference becomes less

reliable. This example also reminds us that in estimating a regression model we should

be wary of mechanically estimating it without paying due attention to the possibility of

structural breaks, especially if we are dealing with time series data.

3.6 Use of dummy variables in seasonal data

An interesting feature of many economic time series based on weekly, monthly, and

quarterly data is that they exhibit seasonal patterns (oscillatory movements). Some

frequently encountered examples are sales at Christmas time, demand for money by

households at vacation times, demand for cold drinks in the summer, demand for air

travel at major holidays such as Thanksgiving and Christmas, and demand for choco-

late on Valentine’s Day.

The process of removing the seasonal component from a time series is called

deseasonlization or seasonal adjustment and the resulting time series is called a

deseasonalized or seasonally adjusted time series.7

Important time series, such as the consumer price index (CPI), producer’s price

index (PPI), unemployment rate, housing starts, and index of industrial production are

usually published in seasonally adjusted basis.

There are various methods of deseasonalizing a time series, but one simple and

rough and ready method is the method of dummy variables.8

We illustrate this method with a concrete example. See Table 3.10 on the compan-

ion website.9

Since sales of fashion clothing are season-sensitive, we would expect a good deal of

seasonal variation in the volume of sales. The model we consider is as follows:

Sales A A D A D A D ut t t t t� � � � �1 2 2 3 3 4 4 (3.10)

where D2 = 1 for second quarter, D3 = 1 for third quarter, D4 = 1 for fourth quarter,

Sales = real sales per thousand square feet of retail space. Later we will expand this

model to include some quantitative regressors.

Notice that we are treating the first quarter of the year as the reference quarter.

Therefore A2, A3, and A4 are differential intercept coefficients, showing how the mean

sales in the second, third, and fourth quarters differ from the mean sales in the first

quarter. A1 is the mean sales value in the first quarter. Also note that we assume that

each quarter is associated with a different season.
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7 It may be noted that a time series may contain four components: seasonal, cyclical, trend, and random.

8 For an accessible discussion of the various methods, see Francis X. Diebold, Elements of Forecasting, 4th

edn, South Western Publishing, 2007.

9 The data used here are taken from Christiaan Heij, Paul de Boer, Philip Hans Franses, Teun Kloek,

Herman K. van Dijk, Econometric Methods with Applications in Business and Economics, Oxford University

Press, 2004, but the original source is: G.M. Allenby, L. Jen, and R.P. Leone, Economic Trends and Being

Trendy: The influence of Consumer Confidence on Retail Fashion Sales, Journal of Business and Economic

Statistics, 1996, pp. 103–111.



The data for estimating Eq. (3.10) are given in Table 3.10 along with data on some

other variables, which can be found on the companion website.

The results of the regression (3.10) are given in Table 3.11. These results show that in-

dividually each differential intercept dummy is highly statistically significant, as shown

by its p value. The interpretation of, say, D2 is that the mean sales value in the second

quarter is greater than the mean sales in the first, or reference, quarter by 14.69229 units;

the actual mean sales value in the second quarter is (73.18343 + 14.69229) = 87.87572.

The other differential intercept dummies are to be interpreted similarly.

As you can see from Table 3.11, fashion sales are highest in the fourth quarter,

which includes Christmas and other holidays, which is not a surprising finding.
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Dependent Variable: SALES
Method: Least Squares
Sample: 1986Q1 1992Q4
Included observations: 28

Coefficient Std. Error t-Statistic Prob.

C 73.18343 3.977483 18.39943 0.0000

D2 14.69229 5.625010 2.611957 0.0153

D3 27.96471 5.625010 4.971496 0.0000

D4 57.11471 5.625010 10.15371 0.0000

R-squared 0.823488 Mean dependent var 98.12636
Adjusted R-squared 0.801424 S.D. dependent var 23.61535
S.E. of regression 10.52343 Akaike info criterion 7.676649
Sum squared resid 2657.822 Schwarz criterion 7.866964
Log likelihood –103.4731 Durbin–Watson stat 1.024353
F-statistic 37.32278 Prob(F-statistic) 0.000000

Table 3.11 Results of regression (3.10).
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Figure 3.3 Actual and seasonally adjusted fashion sales.



Since the sales volume differs from quarter to quarter, how do we obtain the values

of the fashion sales time series that take into account the observed seasonal variation?

In other words, how do we deseasonalize this time series?

In order to deseasonalize the sales time series, we proceed as follows:

1 From the estimated model (3.10) we obtain the estimated sales volume.

2 Subtract the estimated sales value from the actual sales volume and obtain the

residuals.

3 To the estimated residuals, we add the (sample) mean value of sales, which is

98.1236 in the present case. The resulting values are the deseasonalized sales

values. We show the calculations in Table 3.12.
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obs SALES SALESF RESID SEADJ

1986Q1 53.71400 73.18343 –19.46943 78.65417

1986Q2 71.50100 87.87572 –16.37471 81.74889

1986Q3 96.37400 101.1481 –4.774143 93.34946

1986Q4 125.0410 130.2981 –5.257143 92.86646

1987Q1 78.61000 73.18343 5.426571 103.5502

1987Q2 89.60900 87.87572 1.733286 99.85689

1987Q3 104.0220 101.1481 2.873857 100.9975

1987Q4 108.5580 130.2981 –21.74014 76.38345

1988Q1 64.74100 73.18343 –8.442429 89.68118

1988Q2 80.05800 87.87572 –7.817714 90.30589

1988Q3 110.6710 101.1481 9.522857 107.6465

1988Q4 144.5870 130.2981 14.28886 112.4125

1989Q1 81.58900 73.18343 8.405571 106.5292

1989Q2 91.35400 87.87572 3.478286 101.6019

1989Q3 108.1330 101.1481 6.984857 105.1085

1989Q4 135.1750 130.2981 4.876857 103.0005

1990Q1 89.13400 73.18343 15.95057 114.0742

1990Q2 97.76500 87.87572 9.889286 108.0129

1990Q3 97.37400 101.1481 –3.774143 94.34946

1990Q4 124.0240 130.2981 –6.274143 91.84946

1991Q1 74.58900 73.18343 1.405571 99.52917

1991Q2 95.69200 87.87572 7.816286 105.9399

1991Q3 96.94200 101.1481 –4.206143 93.91746

1991Q4 126.8170 130.2981 –3.481143 94.64246

1992Q1 69.90700 73.18343 –3.276428 94.84717

1992Q2 89.15100 87.87572 1.275286 99.39889

1992Q3 94.52100 101.1481 –6.627143 91.49646

1992Q4 147.8850 130.2981 17.58686 115.7105

Note: Residuals = actual sales – forecast sales; seadj = seasonally adjusted sales, which are
obtained by adding to the residuals the average value of sales over the sample period,
which is 98.1236.

Table 3.12 Sales, forecast sales, residuals, and seasonally adjusted sales.



Figure 3.3 (p. 59) shows the actual and adjusted fashion sales. As you can see from this

figure, the seasonally adjusted sales series is much smoother than the original series.

Since the seasonal factor has been removed from the adjusted sales series, the ups and

downs in the adjusted series may reflect the cyclical, trend, and random components

that may exist in the series (see Exercise 3.12).

From the retailers’ point of view, knowledge of seasonal factors is important as it en-

ables them to plan their inventory according to the season. This also helps manufac-

turers to plan their production schedule.

3.7 Expanded sales function

Besides sales volume, we have data on real personal disposable income (RPDI) and

consumer confidence index (CONF). Adding these variables to regression (3.10), we

obtain Table 3.13.

The first point to note is that all the differential dummy coefficients are highly sig-

nificant (the p values being very low in each case), suggesting that there is seasonal

factor associated with each quarter. The quantitative regressors are also highly signifi-

cant and have a priori expected signs; both have positive impact on sales volume.

Following the procedure laid out for deseasonalizing a time series, for the expanded

sales function we obtain the seasonally adjusted sales as shown in Table 3.14. Figure 3.4

shows the results graphically.

As you would expect, the seasonally adjusted sales figures are much smoother than

the original sales figures.

A technical note: We found seasonality in the fashion sales time series. Could there

be seasonality in the PPDI and CONF series? If so, how do we deseasonalize the latter

two series? Interestingly, the dummy variables used to deseasonalize the sales time

series also deseasonalize the other two time series. This is due to a well-known
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Dependent Variable: SALES
Method: Least Squares
Sample: 1986Q1 1992Q4
Included observations: 28

Coefficient Std. Error t-Statistic Prob.

C –152.9293 52.59149 –2.907871 0.0082

RPDI 1.598903 0.370155 4.319548 0.0003

CONF 0.293910 0.084376 3.483346 0.0021

D2 15.04522 4.315377 3.486421 0.0021

D3 26.00247 4.325243 6.011795 0.0000

D4 60.87226 4.427437 13.74887 0.0000

R-squared 0.905375 Mean dependent var 98.12636
Adjusted R-squared 0.883869 S.D. dependent var 23.61535
S.E. of regression 8.047636 Akaike info criterion 7.196043
Sum squared resid 1424.818 Schwarz criterion 7.481516
Log likelihood –94.74461 Durbin–Watson stat 1.315456
F-statistic 42.09923 Prob(F-statistic) 0.000000

Table 3.13 Expanded model of fashion sales.



theorem in statistics, known as the Frisch–Waugh Theorem10 (see Exercise 3.9). So

by introducing the seasonal dummies in the model we deseasonalize all the time series

used in the model. So to speak, we kill (deseasonalize) three birds (three time series)

with one stone (a set of dummy variables).

The results given in Table 3.13 assume that the intercepts, reflecting seasonal fac-

tors, vary from quarter to quarter, but the slope coefficients of RPDI and CONF

remain constant throughout. But we can test this assumption, by introducing differen-

tial slope dummies as follows:
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SALES FORECAST
SALES

RESIDUALS SADSALES

53.71400 65.90094 –12.18694 85.93666

71.50100 83.40868 –11.90768 86.21592

96.37400 91.90977 4.464227 102.5878

125.0410 122.7758 2.265227 100.3888

78.61000 66.77385 11.83615 109.9598

89.60900 78.80558 10.80342 108.9270

104.0220 95.25996 8.762036 106.8856

108.5580 122.1257 –13.56774 84.55586

64.74100 73.55222 –8.811222 89.31238

80.05800 86.16732 –6.109321 92.01428

110.6710 104.9276 5.743355 103.8670

144.5870 133.7971 10.78986 108.9135

81.58900 83.36707 –1.778069 96.34553

91.35400 92.49550 –1.141502 96.98210

108.1330 111.1844 –3.051364 95.07224

135.1750 140.9760 –5.801002 92.32260

89.13400 81.99727 7.136726 105.2603

97.76500 92.76732 4.997684 103.1213

97.37400 97.34940 0.024596 98.14819

124.0240 121.5858 2.438186 100.5618

74.58900 70.90284 3.686156 101.8098

95.69200 90.00940 5.682596 103.8062

96.94200 104.7525 –7.810495 90.31310

126.8170 127.3469 –0.529909 97.59369

69.90700 69.78981 0.117194 98.24079

89.15100 91.47620 –2.325197 95.79840

94.52100 102.6534 –8.132355 89.99124

147.8850 143.4796 4.405374 102.5290

Note: Seasonally adjusted sales (SADSALES) = residual + 98.1236

Table 3.14 Actual sales, forecast sales, residuals, and seasonally adjusted sales.

10 “In general the theorem shows that if variables are subject to prior adjustment by ordinary least

squares and the residuals subsequently used in a regression equation then the resulting estimates are

identical to those from a regression which uses unadjusted data but uses the adjustment variables explicitly.”

Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar, UK, 1997, p. 150.
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In this formulation, the differential slope coefficients B3 through B8 allow us to find

out if the slope coefficients of the two quantitative regressors vary from quarter to

quarter. The results are shown in Table 3.15.

Since none of the differential slope coefficients are statistically significant, these re-

sults show that the coefficients of RPDI and CONF do not vary over the seasons. Since

these results also show that none of the seasonal dummies are significant, there are no

seasonal variations in the fashion sales. But if we drop the differential slope coeffi-

cients from the model, all the (differential) intercept dummies are statistically signifi-

cant, as we saw in Table 3.13. This strongly suggests that there is a strong seasonal

factor in fashion sales.

What this implies is that the differential slope dummies do not belong in the model.

So we will stick with the model given in Table 3.12.

Even then the exercise in Table 3.15 is not futile because it shows that in modeling a

phenomenon we must take into account the possibility of the differences in both the

intercepts and slope coefficients. It is only when we consider the full model, as in Eq.

(3.11), that we will be able to find out whether there are differences in the intercepts or

slopes or both.
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3.8 Summary and conclusions

Qualitative, or dummy, variables taking values of 1 and 0 show how qualitative

regressors can be “quantified” and the role they play in regression analysis.

If there are differences in the response of the regressand because of qualitative

regressors, they will be reflected in the differences in the intercepts, or slope coeffi-

cients, or both of the various subgroup regressions.

Dummy variables have been used in a variety of situations, such as (1) comparing

two or more regressions, (2) structural break(s) in time series, and (3) deseasonalizing

time series.

Despite their useful role in regression analysis, dummy variables need to be handled

carefully. First, if there is an intercept in the regression model, the number of dummy

variables must be one less than the number of classifications of each qualitative vari-

able. Second, of course, if you drop the (common) intercept from the model, you can

have as many dummy variables as the number of categories of the dummy variable.

Third, the coefficient of a dummy variable must always be interpreted in relation to the

reference category, that is, the category that receives the value of 0. The choice of the

reference category depends on the purpose of research at hand. Fourth, dummy vari-

ables can interact with quantitative regressors as well as with qualitative regressors.

Fifth, if a model has several qualitative variables with several categories, introduction
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Dependent Variable: SALES
Method: Least Squares
Sample: 1986Q1 1992Q4
Included observations: 28

Coefficient Std. Error t-Statistic Prob.

C –191.5847 107.9813 –1.774239 0.0951

D2 196.7020 221.2632 0.888995 0.3872

D3 123.1388 163.4398 0.753420 0.4621

D4 50.96459 134.7884 0.378108 0.7103

RPDI 2.049795 0.799888 2.562601 0.0209

CONF 0.280938 0.156896 1.790602 0.0923

D2*RPDI –1.110584 1.403951 –0.791042 0.4405

D3*RPDI –1.218073 1.134186 –1.073963 0.2988

D4*RPDI –0.049873 1.014161 –0.049176 0.9614

D2*CONF –0.294815 0.381777 –0.772219 0.4512

D3*CONF 0.065237 0.259860 0.251046 0.8050

D4*CONF 0.057868 0.201070 0.287803 0.7772

R-squared 0.929307 Mean dependent var 98.12636
Adjusted R-squared 0.880706 S.D. dependent var 23.61535
S.E. of regression 8.156502 Akaike info criterion 7.333035
Sum squared resid 1064.456 Schwarz criterion 7.903980
Log likelihood –90.66249 Hannan–Quinn criter. 7.507578
F-statistic 19.12102 Durbin–Watson stat 1.073710
Prob(F-statistic) 0.000000

Table 3.15 Fashion sales regression with differential intercept and slope

dummies.



of dummies for all the combinations can consume a large number of degrees of free-

dom, especially if the sample size is relatively small. Sixth, keep in mind that there are

other more sophisticated methods of deseasonalizing a time series, such as the Census

X-12 method used by the US Department of Commerce.

Exercises

3.1 How would you compare the results of the linear wage function given in Table

3.1 with the semi-log wage regression given in Table 3.5? How would you compare the

various coefficients given in the two tables?

3.2 Replicate Table 3.4, using log of wage rate as the dependent variable and com-

pare the results thus obtained with those given in Table 3.4.

3.3 Suppose you regress the log of the wage rate on the logs of education and experi-

ence and the dummy variables for gender, race, and union status. How would you in-

terpret the slope coefficients in this regression?

3.4 Besides the variables included in the wage regression in Tables 3.1 and 3.5, what

other variables would you include?

3.5 Suppose you want to consider the geographic region in which the wage earner

resides. Suppose we divide US states into four groups: east, south, west, and north.

How would you extend the models given in Tables 3.1 and 3.5?

3.6 Suppose instead of coding dummies as 1 and 0, you code them as –1 and +1. How

would you interpret the regression results using this coding?

3.7 Suppose somebody suggests that in the semi-log wage function instead of using 1

and 0 values for the dummy variables, you use the values 10 and 1. What would be the

outcome?

3.8 Refer to the fashion data given in Table 3.10. Using log of sales as the dependent

variable, obtain results corresponding to Tables 3.11, 3.12, 3.13, 3.14, and 3.15 and

compare the two sets of results.

3.9 Regress Sales, RPDI, and CONF individually on an intercept and the three dum-

mies and obtain residuals from these regressions, say S1, S2, S3. Now regress S1 on S2

and S3 (no intercept term in this regression)11 and show that slope coefficients of S2

and S3 are precisely the same as those of RPDI and CONF obtained in Table 3.13, thus

verifying the Frisch–Waugh theorem.

3.10 Collect quarterly data on personal consumption expenditure (PCE) and dispos-

able personal income (DPI), both adjusted for inflation, and regress personal con-

sumption expenditure on personal disposable income. If you think there is a seasonal

pattern in the data, how would you deseasonalize the data using dummy variables?

Show the necessary calculations.
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11 Since the mean value of OLS residuals is always zero, there is no need for the intercept in this

regression.

12 This is taken from Table 4 of Rashad (Kelly), Inas, Obesity and diabetes: the roles that prices and

policies play. Advances in Health Economics and Health Services Research, vol. 17, pp. 113–28, 2007. Data

come from various years.



3.11 Continuing with Exercise 3.10, how would you find out if there are structural

breaks in the relationship between PCE and DPI? Show the necessary calculations.

3.12 Refer to the fashion sales example discussed in the text. Reestimate Eq. (3.10) by

adding the trend variable, taking values of 1, 2, and so on. Compare your results with

those given in Table 3.10. What do these results suggest?

3.13 Continue with the preceding exercise. Estimate the sales series after removing

the seasonal and trend components from it and compare your analysis with that dis-

cussed in the text.

3.14 Estimate the effects of ban and sugar_sweet_cap on diabetes using the data in

Table 3.16, which can be found on the companion website,12 where

diabetes = diabetes prevalence in country

ban = 1 if some type of ban on genetically modified goods is present, 0 otherwise

sugar_sweet_cap = domestic supply of sugar and sweeteners per capita, in kg

What other variables could have been included in the model?
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4
Regression diagnostic I: multicollinearity

One of the assumptions of the classical linear regression model (CLRM) is that there is

no exact linear relationship among the regressors. If there are one or more such rela-

tionships among the regressors we call it multicollinearity or collinearity, for short. At

the outset, we must distinguish between perfect collinearity and imperfect

collinearity.1 To explain, consider the k-variable linear regression model:

Y B B X B X ui i k ki i� � � � �1 2 2 � (4.1)

If, for example, X Xi i2 33 1� � we have a case of perfect collinearity for X Xi i2 31 3� � .

Therefore, if we were to include both X2i and X3i in the same regression model, we will

have perfect collinearity, that is, a perfect linear relationship between the two vari-

ables. In situations like this we cannot even estimate the regression coefficients, let

alone perform any kind of statistical inference.

On the other hand, if we have X X vi i i2 33 1� � � , where vi is a random error term,

we have the case of imperfect collinearity, for X X vi i i2 31 3� � � . Therefore, in this

case there is no perfect linear relationship between the two variables; so to speak, the

presence of the error term vi dilutes the perfect relationship between these variables.

In practice, exact linear relationship(s) among regressors is a rarity, but in many ap-

plications the regressors may be highly collinear. This case may be called imperfect

collinearity or near-collinearity. Therefore, in this chapter we focus our attention on

imperfect collinearity.2
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1 If there is just one perfect linear relationship between two more regressors, we call it collinearity, but if

there is more than one perfect linear relationship, we call it multicollinearity. However, we will use the terms

collinearity and multicollinearity interchangeably. The context of the problem at hand will tell us which one

we are dealing with.

2 To give an extreme example of perfect collinearity, suppose we introduce income variables in both

dollars and cents in the consumption function, relating consumption expenditure to income. Since a dollar

is equal to 100 cents, including this will lead to perfect collinearity. Another example is the so-called dummy

variable trap, which, as we saw in Chapter 3, results if we include both an intercept term and all categories of

the dummy variables. For example, in a regression explaining hours of work in relation to several economic

variables, we include two dummies, one for male and one for female, and also retain the intercept term. This

will lead to perfect collinearity. Of course, if we suppress the intercept term in this situation, we will avoid

the dummy variable trap. In practice it is better to retain the intercept but include just one gender dummy; if

the dummy takes a value of 1 for females, it will take a value of 0 whenever a male worker is involved.



4.1 Consequences of imperfect collinearity

1 OLS estimators are still BLUE, but they have large variances and covariances,

making precise estimation difficult.

2 As a result, the confidence intervals tend to be wider. Therefore, we may not reject the

“zero null hypothesis” (i.e. the true population coefficient is zero).

3 Because of (1), the t ratios of one or more coefficients tend to be statistically

insignificant.

4 Even though some regression coefficients are statistically insignificant, the R2

value may be very high.

5 The OLS estimators and their standard errors can be sensitive to small changes in

the data (see Exercise 4.6).

6 Adding a collinear variable to the chosen regression model can alter the coeffi-

cient values of the other variables in the model.

In short, when regressors are collinear, statistical inference becomes shaky, espe-

cially so if there is near-collinearity. This should not be surprising, because if two vari-

ables are highly collinear it is very difficult to isolate the impact of each variable

separately on the regressand.

To see some of these consequences, we consider a three-variable model, relating the de-

pendent variable Y to two regressors, X2 and X3. That is, we consider the following model:

Y B B X B X ui i i i� � � �1 2 2 3 3 (4.1)

Using OLS, it can be shown that the OLS estimators are as follows3

b
y x x y x x x

x x

i i i i i i i

i i
2

2 3
2

3 2 3

2
2

3
2

�
�( )( ) ( )( )

( )( )

� � � �

� � �( )�x xi i2 3
2

(4.2)

b
y x x y x x x

x x

i i i i i i i

i i
3

3 2
2

2 2 3

2
2

3
2

�
�( )( ) ( )( )

( )( )

� � � �

� � �( )�x xi i2 3
2

(4.3)

b Y b X b X1 2 2 3 3� � � (4.4)

where the variables are expressed as deviations from their mean values – that is,

y Y Yi i� � , x X Xi i2 2 2� � and X Xi3 3� .

Notice that the formulae for the two slope coefficients are symmetrical in the sense

that one can be obtained form the other by interchanging the names of the variables.

It can be further shown that
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(4.5)

and
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(4.6)
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3 See Gujarati/Porter, op cit., pp. 193–4.



where

VIF �
�
1

1 23
2r

(4.7)

where 
2 is the variance of the error term ui and r23 is the coefficient of correlation be-

tween X2 and X3 and VIF is the variance-inflating factor: a measure of the degree to

which the variance of the OLS estimator is inflated because of collinearity. To see this,

consider Table 4.1.

It is clear from this table that as the correlation coefficient between X2 and X3 in-

creases, the variance of b2 increases rapidly in a nonlinear fashion. As a result, the con-

fidence intervals will be progressively wider and we may mistakenly conclude that the

true B2 is indifferent from zero.

It may be noted that the inverse of the VIF is called tolerance (TOL) – that is

TOL �
1

VIF
(4.8)

When r23
2 1� (i.e. perfect collinearity ), TOL is zero, and when it is 0 (i.e. no

collinearity), TOL is 1.

The VIF formula given for the two-variable regression can be generalized to the

k-variable regression model (an intercept and (k – 1) regressors) as follows:

var VIF( )b
x R xk

k k k

�
�

�
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!
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#

$
$
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2

2 2

2

2

1

1� �
(4.9)

where R
k
2 is the R2 from the regression of the kth regressor on all other regressors in

the model and where � �x X X
k k k
2 2� �( ) is the variation in the kth variable about its

mean value. The regression of the kth regressor on the other regressors in the model is

called an auxiliary regression, so if we have 10 regressors in the model, we will have 10

auxiliary regressions.

The Stata statistical package computes the VIF and TOL factors by issuing the com-

mand estat vif after estimating an OLS regression, as we show in the following

example.
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Value of r23 VIF Var(b2)

0.0 1.00 
2
2
2/�x Ki �

0.50 1.33 1.33 × K

0.70 1.96 1.96 × K

0.80 2.78 2.78 × K

0.90 5.26 5.26 × K

0.95 10.26 10.26 × K

0.99 50.25 50.25 × K

0.995 100.00 100 × K

1.00 Undefined Undefined

Note: A similar table can be shown for the variance of b3.

Table 4.1 The effect of increasing r23 on the variance of OLS estimator b2.



4.2 An example: married women’s hours of work in the labor
market

To shed light on the nature of multicollinearity, we use the data from the empirical

work done by Mroz4 – see Table 4.2 on the companion website. He wanted to assess

the impact of several socio-economic variables on married women’s hours of work in

the labor market. This is cross-sectional data on 753 married women for the year 1975.

It should be noted that there were 325 married women who did not work and hence

had zero hours of work.

Some of the variables he used are as follows:

Hours: hours worked in 1975 (dependent variable)

Kidslt6: number of kids under age 6

Kidsge6: number of kids between ages 6 and 18

Age: woman’s age in years

Educ: years of schooling

Wage: estimated wage from earnings

Hushrs: hours worked by husband

Husage: husband’s age

Huseduc: husband’s years of schooling

Huswage: husband’s hourly wage, 1975

Faminc: family income in 1975

Mtr: federal marginal tax rate facing a woman

motheduc: mother’s years of schooling

fatheduc: father’s years of schooling

Unem: unemployment rate in county of residence

exper: actual labor market experience

As a starting point, we obtained the regression results of Table 4.3.

A priori, we would expect a positive relation between hours of work and education,

experience, father’s education and mother’s education, and a negative relationship be-

tween hours of work and age, husband’s age, husband’s hours of work, husband’s

wages, marginal tax rate, unemployment rate and children under 6. Most of these ex-

pectations are borne out by the statistical results. However, a substantial number of

coefficients are statistically insignificant, perhaps suggesting that some of these vari-

ables are collinear, thus leading to higher standard errors and reduced t ratios.

4.3 Detection of multicollinearity

As we will see in the chapters on autocorrelation and heteroscedasticity, there is no

unique test of multicollinearity. Some of the diagnostics discussed in the literature are as

follows.
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4 See T. A. Mroz, The sensitivity of an empirical model of married women’s hours of work to economic

and statistical assumptions, Econometrica, 1987, vol. 55, pp. 765–99.



1 High R2 but few significant t ratios. In our example the R2 value of 0.34 is not par-

ticularly high. But this should not be surprising in cross-sectional data with several

diverse observations. However, quite a few t ratios are statistically insignificant,

perhaps due to collinearity among some regressors.

2 High pairwise correlations among explanatory variables or regressors. Recall

that the sample correlation coefficient between variables Y and X is defined as:

r
x y

x y
XY

i i

i i

�
�

� �2 2
(4.10)

where the variables are defined as deviations from their mean values (e.g.

y Y Yi i� � ). Since we have 15 regressors, we will have 105 pairwise correlations.5

We will not produce all these correlations. Most of the correlation coefficients are

not particularly high, but some are in excess of 0.5. For example, the correlation

between husband’s age and family income is about 0.67, that between mother’s
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Dependent Variable: HOURS
Method: Least Squares
Sample (adjusted): 1 428
Included observations: 428 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 8595.360 1027.190 8.367842 0.0000

AGE –14.30741 9.660582 –1.481009 0.1394

EDUC –18.39847 19.34225 –0.951207 0.3421

EXPER 22.88057 4.777417 4.789319 0.0000

FAMINC 0.013887 0.006042 2.298543 0.0220

FATHEDUC –7.471447 11.19227 –0.667554 0.5048

HUSAGE –5.586215 8.938425 –0.624966 0.5323

HUSEDUC –6.769256 13.98780 –0.483940 0.6287

HUSHRS –0.473547 0.073274 –6.462701 0.0000

HUSWAGE –141.7821 16.61801 –8.531837 0.0000

KIDSGE6 –24.50867 28.06160 –0.873388 0.3830

KIDSLT6 –191.5648 87.83198 –2.181038 0.0297

WAGE –48.14963 10.41198 –4.624447 0.0000

MOTHEDUC –1.837597 11.90008 –0.154419 0.8774

MTR –6272.597 1085.438 –5.778864 0.0000

UNEM –16.11532 10.63729 –1.514984 0.1305

R-squared 0.339159 Mean dependent var 1302.930
Adjusted R-squared 0.315100 S.D. dependent var 776.2744
S.E. of regression 642.4347 Akaike info criterion 15.80507
Sum squared resid 1.70E+08 Schwarz criterion 15.95682
Log likelihood –3366.286 Durbin–Watson stat 2.072493
F-statistic 14.09655 Prob(F-statistic) 0.000000

Table 4.3 Women’s hours worked regression.

5 Of course not all these correlations will be different because the correlation between Y and X is the same

as that between X and Y.



education and father’s education is about 0.55, and that between the marginal tax

rate and family income is about –0.88.

It is believed that high pairwise correlations between regressors are a sign of

collinearity. Therefore one should drop highly correlated regressors. But it is not a

good practice to rely on simple or bivariate correlation coefficients, because they

do not hold the other variables in the model constant while computing the

pairwise correlations.

3 Partial correlation coefficients: To hold the other variables constant, we have to

compute partial correlation coefficients. Suppose we have three variables X1, X2,

and X3. Then we will have three pairwise correlations, r12, r13, and r23 and three par-

tial correlations, r12.3, r13.2, and r23.1; r23.1, for example, means the correlation be-

tween variables X2 and X3, holding the value of variable X1 constant (see Exercise 4.4

about computing partial correlation coefficients). It is quite possible that the corre-

lation between X2 and X3 (= r23) is high, say, 0.85. But this correlation does not take

into account the presence of the third variable X1. If the variable X1 influences both

X2 and X3, the high correlation between the latter two may in fact be due to the

common influence of X1 on both these variables. The partial correlation r23.1 com-

putes the net correlation between X2 and X3 after removing the influence of X1. In

that case it is quite possible that the high observed correlation of 0.85 between X2

and X3 may be reduced to, say, 0.35.

However, there is no guarantee that the partial correlations will provide an in-

fallible guide to multicollinearity. To save space, we will not present the actual

values of the partial correlations for our example. Stata can compute partial corre-

lations for a group of variables with simple instructions.
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Variable VIF TOL = 1/VIF

mtr 7.22 0.138598

age 5.76 0.173727

husage 5.22 0.191411

faminc 5.14 0.194388

huswage 3.64 0.274435

educ 2.02 0.494653

hushrs 1.89 0.529823

huseduc 1.86 0.536250

fatheduc 1.61 0.621540

motheduc 1.60 0.623696

exper 1.53 0.652549

kidsge6 1.41 0.708820

wage 1.23 0.813643

kidslt6 1.23 0.815686

unem 1.08 0.928387

Mean VIF 2.83

Table 4.4 The VIF and TOL factors.



4 Auxiliary regressions: To find out which of the regressors are highly collinear

with the other regressors included in the model, we can regress each regressor on

the remaining regressors and obtain the auxiliary regressions mentioned earlier.

Since we have 15 regressors, there will be 15 auxiliary regressions. We can test

the overall significance of each regression by the F test discussed in Chapter 2. The

null hypothesis here is that all the regressor coefficients in the auxiliary regression

are zero. If we reject this hypothesis for one or more of the auxiliary regressions,

we can conclude that the auxiliary regressions with significant F values are collin-

ear with the other variables in the model. Of course, if we have several regressors,

as in our example, calculating several auxiliary regressors in practice will be te-

dious, if not computationally impossible.

5 The variance inflation (VIF) and tolerance (TOL) factors

The VIF and TOL factors for our example, which are obtained from Stata, are

given in Table 4.4.

This table clearly shows that there is high degree of collinearity among several vari-

ables; even the average VIF is in excess of 2.

4.4 Remedial measures

There are several remedies suggested in the literature.6 Whether any of them will work

in a specific situation is debatable. Since the OLS estimators are BLUE as long as

collinearity is not perfect, it is often suggested that the best remedy is to do nothing but

simply present the results of the fitted model. This is so because very often collinearity

is essentially a data deficiency problem, and in many situations we may not have choice

over the data we have available for research.7

But sometimes it is useful to rethink the model we have chosen for analysis to make

sure that all the variables included in the model may not be essential. Turning to the

model given in Table 4.3, the variables father’s education and mother’s education are

likely to be correlated, which in turn would mean that the daughter’s education may

also be correlated with these two variables. One can also question whether including

children over the age of six as an explanatory variable makes any sense. Also, wife’s and

husband’s ages are also correlated. Therefore if we exclude these variables from the

model, maybe the collinearity problem may not be as serious as before.8

The results of the revised model are given in Table 4.5.

As you can see, most of the variables are now statistically significant at the 10% or

lower level of significance and they make economic sense, the exception being the un-

employment rate, which is significant at about the 11% level of significance. The corre-

sponding VIF and TOL factors for the coefficients in this table are given in Table 4.6.

Although the average VIF has dropped, there is still considerable collinearity

among the regressors included in the revised model. We could estimate more such

models using various combinations of the explanatory variables given in Table 4.3 to

74 Critical evaluation of the classical linear regression model

6 For a detailed discussion, see Gujarati/Porter, op cit., pp. 342–6.

7 The econometrician Arthur Goldberger called this the problem of “micronumerosity”, which simply

means small sample size and or lack of sufficient variability in the values of the regressors. See his A Course

in Econometrics, Harvard University Press, Cambridge, MA, 1991, p. 249.

8 But beware of specification bias. One should not exclude variables just to get rid of collinearity. If a

variable belongs in the model, it should be retained even if it is not statistically significant.



see which model may be least collinear. But this strategy, called “data mining” or “data

fishing”, is not recommended. If we have a model containing several variables that le-

gitimately belong in the model, it is better to leave them in the model. If some coeffi-

cients in this model are not statistically significant, so be it. There is very little we can

do to the data short of collecting new data or a different set of data, if that is feasible.

Regression diagnostic I: multicollinearity 75

II

Dependent Variable: HOURS
Method: Least Squares
Sample (adjusted): 1 428
Included observations: 428 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 8484.523 987.5952 8.591094 0.0000

AGE –17.72740 4.903114 –3.615540 0.0003

EDUC –27.03403 15.79456 –1.711604 0.0877

EXPER 24.20345 4.653332 5.201315 0.0000

FAMINC 0.013781 0.005866 2.349213 0.0193

HUSHRS –0.486474 0.070462 –6.904046 0.0000

HUSWAGE –144.9734 15.88407 –9.126972 0.0000

KIDSLT6 –180.4415 86.36960 –2.089178 0.0373

WAGE –47.43286 10.30926 –4.600995 0.0000

MTR –6351.293 1029.837 –6.167278 0.0000

UNEM –16.50367 10.55941 –1.562935 0.1188

R-squared 0.335786 Mean dependent var 1302.930
Adjusted R-squared 0.319858 S.D. dependent var 776.2744
S.E. of regression 640.1992 Akaike info criterion 15.78680
Sum squared resid 1.71E+08 Schwarz criterion 15.89112
Log likelihood –3367.375 Durbin–Watson stat 2.078578
F-statistic 21.08098 Prob(F-statistic) 0.000000

Table 4.5 Revised women’s hours worked regression.

Variable VIF TOL =1/VIF

mtr 6.54 0.152898

faminc 4.88 0.204774

huswage 3.35 0.298295

hushrs 1.76 0.568969

age 1.49 0.669733

exper 1.46 0.683036

educ 1.36 0.736669

wage 1.21 0.824171

kidslt6 1.19 0.837681

unem 1.07 0.935587

Mean VIF 2.43

Table 4.6 VIF and TOL for coeficients in Table 4.5.



4.5 The method of principal components (PC)

A statistical method, known as the principal component analysis (PCA), can transform

correlated variables into orthogonal or uncorrelated variables.9 The orthogonal vari-

ables thus obtained are called the principal components. Returning to our

hours-worked regression given in Table 4.3, we have 15 regressors. The method of PC

will in principle compute 15 principal components, PCs, denoted as PC1, PC2, ..., PC15,

such that they all are mutually uncorrelated. These PCs are linear combinations of the

original regressors. In practice we need not use all the 15 PCs, because a smaller number

will often be adequate to explain the phenomenon under study, as we show below.

The basic idea behind PCA is simple. It groups the correlated variables into

sub-groups so that variables belonging to any sub-group have a “common” factor that

moves them together. This common factor may be skill, ability, intelligence, ethnicity,

or any such factor. That common factor, which is not always easy to identify, is what

we call a principal component. There is one PC for each common factor. Hopefully,

these common factors or PCs are fewer in number than the original number of

regressors.

The starting point of the PC analysis is the correlation matrix of the original vari-

ables. The 15 × 15 correlation matrix is too big to reproduce here, but any statistical

package will produce them. From the correlation matrix, using Minitab 15, we ob-

tained the following PCs (Table 4.7), 15 in total. We will not discuss the actual mathe-

matics of extracting the PCs, for it is rather involved.

Interpretation of the PCs

The first part of the above table gives the estimated 15 PCs. PC1, the first principal

component, has a variance (= eigenvalue) of 3.5448 and accounts for 24% of the total

variation in all the regressors. PC2, the second principal component, has a variance of

2.8814, accounting for 19% of the total variation in all 15 regressors. These two PCs ac-

count for 42% of the total variation. In this manner you will see the first six PCs cumu-

latively account for 74% of the total variation in all the regressors. So although there

are 15 PCs, only six seem to be quantitatively important. This can be seen more clearly

in Figure 4.1 obtained from Minitab 15.

Now look at the second part of Table 4.7. For each PC it gives what are called load-

ings or scores or weights – that is, how much each of the original regressors contrib-

utes to that PC. For example, Take PC1: education, family income, father’s education,

mother’s education, husband’s education, husband’s wage, and MTR load heavily on

this PC. But if you take PC4 you will see that husband’s hours of work contribute

heavily to this PC.

Although mathematically elegant, the interpretation of PCs is subjective. For in-

stance, we could think of PC1 as representing the overall level of education, for that

variable loads heavily on this PC.

Once the principal components are extracted, we can then regress the original

regressand (hours worked) on the principal components, bypassing the original
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9 Literally interpreted, the term orthogonal means intersecting or lying at right angles. Uncorrelated

variables are said to be orthogonal because when plotted on a graph, they form right angles to one of the

axes.
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Eigenanalysis of the Correlation Matrix
428 cases used, 325 cases contain missing values

Eigenvalue 3.5448 2.8814 1.4598 1.2965 1.0400 0.8843 0.8259 0.6984

Proportion 0.236 0.192 0.097 0.086 0.069 0.059 0.055 0.047

Cumulative 0.236 0.428 0.526 0.612 0.682 0.740 0.796 0.842

Eigenvalue 0.6495 0.5874 0.4151 0.3469 0.1823 0.1046 0.0830

Proportion 0.043 0.039 0.028 0.023 0.012 0.007 0.006

Cumulative 0.885 0.925 0.952 0.975 0.987 0.994 1.000

Variable PC1 PC2 PC3 PC4 PC5 PC6

AGE 0.005 0.528 0.114 0.021 –0.089 0.075

EDUC 0.383 –0.073 0.278 –0.064 0.188 0.150

EXPER –0.039 0.373 0.267 0.025 0.255 0.058

FAMINC 0.424 0.106 –0.314 0.179 –0.029 –0.026

FATHEDUC 0.266 –0.142 0.459 –0.081 –0.289 –0.142

HUSAGE –0.008 0.513 0.106 0.021 –0.141 0.033

HUSEDUC 0.368 –0.091 0.129 0.015 0.069 0.230

HUSHRS 0.053 –0.129 0.099 0.718 0.049 0.461

HUSWAGE 0.382 0.093 –0.373 –0.240 –0.141 –0.185

KIDSGE6 –0.057 –0.320 –0.309 0.062 –0.292 0.101

KIDSLT6 0.014 –0.276 0.018 –0.278 0.515 0.163

WAGE 0.232 0.052 –0.031 –0.054 0.526 –0.219

MOTHEDUC 0.224 –0.214 0.450 –0.031 –0.299 –0.238

MTR –0.451 –0.127 0.228 –0.197 0.018 –0.003

UNEM 0.086 0.071 –0.039 –0.508 –0.208 0.711

Table 4.7 Principal components of the hours-worked example.
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Figure 4.1 Plot of eigenvalues (variances) against principal components.



regressors: To illustrate, suppose we use only the first six PCs, as they seem to be the

most important. Regressing hours worked on these six PCs, we obtain the results in

Table 4.8 from Minitab15.

From these results it seems that PC2 and PC4 seem to explain the behavior of

women’s hours worked best. Of course, the rub here is that we do not know how to in-

terpret these principal components. However, the method of principal components is

a useful way of reducing the number of correlated regressors into a few components

that are uncorrelated. As a result, we do not face the collinearity problem. Since there

is no such thing as a free lunch, this simplification comes at a cost because we do not

know how to interpret the PCs in a meaningful way in practical applications. If we can

identify the PCs with some economic variables, the principal components method

would prove very useful in identifying multicollinearity and also provide a solution for

it.

In passing it may be mentioned that the method of ridge regression is another

method of dealing with correlated variables. The estimators produced by ridge regres-

sion are biased, but they have smaller mean squared error (MSE) than the OLS estima-

tors.10 A discussion of ridge regression is beyond the scope of this book.11

4.6 Summary and conclusions

In this chapter we examined the problem of multicollinearity, a problem commonly

encountered in empirical work, especially if there are several correlated explanatory

variables in the model. As long as collinearity is not perfect, we can work within the
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Hours = 1303 – 1.5 C23 + 84.0 C24 + 18.6 C25 + 106 C26 + 4.8 C27 – 56.4 C28
428 cases used, 325 cases contain missing values*

Predictor Coef SE Coef t P(P value)

Constant 1302.93 36.57 35.63 0.000

PC1 –1.49 19.45 –0.08 0.939

PC2 84.04 21.57 3.90 0.000

PC3 18.62 30.30 0.61 0.539

PC4 105.74 32.16 3.29 0.001

PC5 4.79 35.90 0.13 0.894

PC6 –56.36 38.94 –1.45 0.149

S** = 756.605 R-Sq = 6.3% R-Sq(adj) = 5.0%

Note: * 325 married women had zero hours of work.

** This is the standard error of the regression (= �
)

Note: The first column gives the name of the regressors – that is, the PCs, the third
column gives their estimated standard errors, the fourth column gives the estimated t
values, and the last column gives the p values (i.e. the exact level of significance.)

Table 4.8 Principal components regression.

10 The MSE of an estimator, say ��of �, is equal to its variance plus the square of the bias in estimating it.

11 For a user-friendly discussion, see Samprit Chatterjee and Ali S. Hadi, Regression Analysis by

Example, 4th edn, John Wiley &Sons, New York, 2006, pp. 266–75.



framework of the classical linear regression model, provided the other assumptions of

the CLRM are satisfied.

If collinearity is not perfect, but high, several consequences ensue. The OLS estima-

tors are still BLUE, but one or more regression coefficients have large standard errors

relative to the values of the coefficients, thereby making the t ratios small. Therefore

one may conclude (misleadingly) that the true values of these coefficients are not dif-

ferent from zero. Also, the regression coefficients may be very sensitive to small

changes in the data, especially if the sample is relatively small (see Exercise 4.6).

There are several diagnostic tests to detect collinearity, but there is no guarantee

that they will yield satisfactory results. It is basically a trial and error process.

The best practical advice is to do nothing if you encounter collinearity, for very

often we have no control over the data. However, it is very important that the variables

included in the model are chosen carefully. As our illustrative example shows, redefin-

ing a model by excluding variables that may not belong in the model may attenuate the

collinearity problem, provided we do not omit variables that are relevant in a given sit-

uation. Otherwise, in reducing collinearity we will be committing model specification

errors, which are discussed in Chapter 7. So, think about the model carefully before

you estimate the regression model.

There is one caveat. If there is multicollinearity in a model and if your objective is

forecasting, multicollinearity may not be bad, provided the collinear relationship ob-

served in the sample continues to hold in the forecast period.

Finally, there is a statistical technique, called principal components analysis,

which will “resolve” the problem of near-collinearity. In PCA we construct artificial

variables in such a way that they are orthogonal to each other. These artificial vari-

ables, called principal components (PC), are extracted from the original X regressors.

We can then regress the original regressand on the principal components. We showed

how the PCs are computed and interpreted, using our illustrative example.

One advantage of this method is that the PCs are usually smaller in number than the

original number of regressors. But one practical disadvantage of the PCA is that the

PCs very often do not have viable economic meaning, as they are (weighted) combina-

tions of the original variables which may be measured in different units of measure-

ment. Therefore, it may be hard to interpret the PCs. That is why they are not much

used in economic research, although they are used extensively in psychological and

education research.

Exercises

4.1 For the hours example discussed in the chapter, try to obtain the correlation

matrix for the variables included in Table 4.3. Eviews, Stata, and several other pro-

grams can compute the correlations with comparative ease. Find out which variables

are highly correlated.

4.2 Do you agree with the following statement and why? Simple correlations between

variables are a sufficient but not a necessary condition for the existence of

multicollinearity.

4.3 Continuing with Exercise 4.1, find out the partial correlation coefficients for the

variables included in Table 4.2, using Stata or any other software you have. Based on

the partial correlations, which variables seem to be highly correlated?
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4.4 In the three-variable model, Y and regressors X2 and X3, we can compute three

partial correlation coefficients. For example, the partial correlation between Y and X2,

holding X3 constant, denoted as r12.3, is as follows:

r
r r r

r r
12 3

12 13 23

13
2

23
21 1

.
( )( )

�
�

� �

where the subscripts 1, 2, and 3 denote the variables Y, X2, and X3, respectively and r12,

r13 and r23 are simple correlation coefficients between the variables.

(a) When will r12 3. be equal to r12? What does that mean?

(b) Is r12 3. less than, equal to or greater than r12? Explain.

4.5 Run the 15 auxiliary regressions mentioned in the chapter and determine which

explanatory variables are highly correlated with the rest of the explanatory variables.

4.6 Consider the sets of data given in the following two tables:

Table 1 Table 2

Y X2 X3 Y X2 X3

1 2 4 1 2 4

2 0 2 2 0 2

3 4 12 3 4 0

4 6 0 4 6 12

5 8 16 5 8 16

The only difference between the two tables is that the third and fourth values of X3 are

interchanged.

(a) Regress Y on X2 and X3 in both tables, obtaining the usual OLS output.

(b) What difference do you observe in the two regressions? And what accounts

for this difference?

4.7 The following data describes the manpower needs for operating a US Navy bach-

elor officers’ quarters, consisting of 25 establishments. The variables are described

below and the data is given in Table 4.9,12 which can be found on the companion

website:

Y: Monthly manhours needed to operate an establishment

X1: Average daily occupancy

X2: Monthly average number of check-ins

X3: Weekly hours of service desk operation

X4: Common use area (in square feet)

X5: Number of building wings

X6: Operational berthing capacity

X7: Number of rooms

Questions:

Are the explanatory variables, or some subset of them, collinear? How is this detected?

Show the necessary calculations.

80 Critical evaluation of the classical linear regression model

12 Source: R. J. Freund and R. C. Littell (1991) SAS System for Regression. SAS Institute Inc.



Optional: Do a principal component analysis, using the data in the above table.

4.8 Refer to Exercise 4.6. First regress Y on X3 and obtain the residuals from this re-

gression, say e1i. Then regress X2 on X3 and obtain the residuals from this regression,

say e2i. Now regress e1i on e2i. This regression will give the partial regression coeffi-

cient given in Eq. (4.2). What does this exercise show? And how would you describe

the residuals e1i and e2i?
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5
Regression diagnostic II:

heteroscedasticity

One of the problems commonly encountered in cross-sectional data is

hetero-scedasticity (unequal variance) in the error term. There are various reasons for

heteroscedasticity, such as the presence of outliers in the data, or incorrect functional

form of the regression model, or incorrect transformation of data, or mixing observa-

tions with different measures of scale (e.g. mixing high-income households with

low-income households) etc.

5.1 Consequences of heteroscedasticity1

The classical linear regression model (CLRM) assumes that the error term ui in the re-

gression model has homoscedasticity (equal variance) across observations, denoted by


2 . For instance, in studying consumption expenditure in relation to income, this as-

sumption would imply that low-income and high-income households have the same

disturbance variance even though their average level of consumption expenditure is

different.

However, if the assumption of homoscedasticity, or equal variance, is not satisfied,

we have the problem of heteroscedasticity, or unequal variance, denoted by 
i
2 (note

the subscript i). Thus, compared to low-income households, high-income households

have not only higher average level of consumption expenditure but also greater vari-

ability in their consumption expenditure. As a result, in a regression of consumption

expenditure in relation to household income we are likely to encounter

heteroscedasticity.

Heteroscedasticity has the following consequences:

1 Heteroscedasticity does not alter the unbiasedness and consistency properties of

OLS estimators.

2 But OLS estimators are no longer of minimum variance or efficient. That is, they

are not best linear unbiased estimators (BLUE); they are simply linear unbiased es-

timators (LUE).

3 As a result, the t and F tests based under the standard assumptions of CLRM may

not be reliable, resulting in erroneous conclusions regarding the statistical signifi-

cance of the estimated regression coefficients.
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4 In the presence of heteroscedasticity, the BLUE estimators are provided by the

method of weighted least squares (WLS).

Because of these consequences, it is important that we check for heteroscedasticity,

which is usually found in cross-sectional data. Before we do that, let us consider a con-

crete example.

5.2 Abortion rates in the USA

What are the factors that determine the abortion rate across the 50 states in the USA?

To study this, we obtained the data shown in Table 5.1, which can be found on the

companion website.2

The variables used in the analysis are as follows:

State = name of the state (50 US states).

ABR = Abortion rate, number of abortions per thousand women aged 15–44 in 1992.

Religion = the percent of a state’s population that is Catholic, Southern Baptist,

Evangelical, or Mormon.

Price = the average price charged in 1993 in non-hospital facilities for an abortion at 10

weeks with local anesthesia (weighted by the number of abortions performed in 1992).

Laws = a variable that takes the value of 1 if a state enforces a law that restricts a mi-

nor’s access to abortion, 0 otherwise.

Funds = a variable that takes the value of 1 if state funds are available for use to pay

for an abortion under most circumstances, 0 otherwise.

Educ = the percent of a state’s population that is 25 years or older with a high school

degree (or equivalent), 1990.

Income = disposable income per capita, 1992.

Picket = the percentage of respondents that reported experiencing picketing with

physical contact or blocking of patients.

The model

As a starting point, we consider the following linear regression model:

ABRi i i i i

i

B B B Price B Laws B Funds

B Educ B

� � � � �

� �

1 2 3 4 5

6

Rel

7 8

1 2 50

Income B Picket u

i

i i i� �

� , , ,�

(5.1)

A priori, we would expect ABR to be negatively related to religion, price, laws,

picket, education, and positively related to fund and income. We assume the error

term satisfies the standard classical assumptions, including the assumption of

homoscedasticity. Of course, we will do a post-estimation analysis to see if this as-

sumption holds in the present case.

Using Eviews6, we obtained the results of Table 5.2, which are given in the standard

Eviews format.
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As these results show, on the basis of the t statistic, price, income, and picket are

statistically significant at the 10% or lower level of significance, whereas the other vari-

ables are not statistically significant, although some of them (laws and education) have

the correct signs. But remember that if there is heteroscedasticity, the estimated t values

may not be reliable.

The R2 value shows that 58% of the variation in the abortion rate is explained by the

model. The F statistic, which tests the hypothesis that all the slopes’ coefficients are si-

multaneously zero, clearly rejects this hypothesis, for its value of 8.199 is highly signifi-

cant; its p value is practically zero. Again, keep in mind that the F statistic may not be

reliable if there is heteroscedasticity.

Note that the significant F does not mean that each explanatory variable is statisti-

cally significant, as the t statistic shows that only some of the explanatory variables are

individually statistically significant.

Analysis of results

As noted, a commonly encountered problem in cross-sectional data is the problem of

heteroscedasticity. In our example, because of the diversity of the states we suspect

heteroscedasticity.

As a simple test of heteroscedasticity, we can plot the histogram of squared residu-

als (S1S) from the regression given in Table 5.2; see Figure 5.1.

It is obvious from this figure that squared residuals, a proxy for the underlying

squared error terms, do not suggest that the error term is homoscedastic.3
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Dependent Variable: ABORTION
Method: Least Squares
Sample: 1 50
Included observations: 50

Coefficient Std. Error t-Statistic Prob.

C 14.28396 15.07763 0.947361 0.3489

RELIGION 0.020071 0.086381 0.232355 0.8174

PRICE –0.042363 0.022223 –1.906255 0.0635

LAWS –0.873102 2.376566 –0.367380 0.7152

FUNDS 2.820003 2.783475 1.013123 0.3168

EDUC –0.287255 0.199555 –1.439483 0.1574

INCOME 0.002401 0.000455 5.274041 0.0000

PICKET –0.116871 0.042180 –2.770782 0.0083

R-squared 0.577426 Mean dependent var 20.57800
Adjusted R-squared 0.506997 S.D. dependent var 10.05863
S.E. of regression 7.062581 Akaike info criterion 6.893145
Sum squared resid 2094.962 Schwarz criterion 7.199069
Log likelihood –164.3286 Durbin–Watson stat 2.159124
F-statistic 8.198706 Prob(F-statistic) 0.000003

Table 5.2 OLS estimation of the abortion rate function.

3 Recall that the OLS estimate of the error variance is given as: � / ( )
2 2� ��e n ki – that is, residual sum of

squares divided by the degrees of freedom.



We can get a better glimpse of heteroscedasticity if we plot the squared residuals

(S1S) against the estimated abortion rate from the regression model (Figure 5.2).

Note: ABORTIONF is the estimated abortion rate from model (5.1).

It seems that there is a systematic relationship between the squared residuals and

the estimated values of the abortion rate, which can be checked by some formal tests of

heteroscedasticity (see also Eq. (5.3) below).
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5.3 Detection of heteroscedasticity

Besides the graphic methods described in the previous section, we can use two com-

monly used tests of heteroscedasticity, namely, the Breusch–Pagan and White tests.4

Breusch–Pagan (BP) test

This test involves the following steps:

1 Estimate the OLS regression, as in Table 5.2, and obtain the squared OLS residu-

als, ei
2 , from this regression.

2 Regress ei
2 on the k regressors included in the model; the idea here is to see if the

squared residuals (a proxy for true squared error term) are related to one or more

X variables.5 You can choose other regressors also that might have some bearing

on the error variance. Now run the following regression:

e A A A Price A Laws A Funds A Educ

A

i i i i i i
2

1 2 3 4 5 6

7

� � � � � �

�

Rel

Income A Picket vi i i� �8

(5.2)

where vi is the error term.

Save R2 from regression (5.2); call it Raux
2 , where aux stands for auxiliary, since

Eq. (5.2) is auxiliary to the primary regression (5.1) (see Table 5.3). The idea

behind Eq. (5.2) is to find out if the squared error term is related to one or more of

the regressors, which might indicate that perhaps heteroscedasticity is present in

the data.

3 The null hypothesis here is that the error variance is homoscedastic – that is, all

the slope coefficients in Eq. (5.2) are simultaneously equal to zero.6 You can use

the F statistic from this regression with (k – 1) and (n – k) in the numerator and de-

nominator df, respectively, to test this hypothesis. If the computed F statistic in

Eq. (5.2) is statistically significant, we can reject the hypothesis of homo-

scedasticity. If it is not, we may not reject the null hypothesis.

As the results in Table 5.3 show, the F statistic (7 df in the numerator and 42 df

in the denominator) is highly significant, for its p value is only about 2%. Thus we

can reject the null hypothesis.

4 Alternatively, you can use the chi-square statistic. It can be shown that under the

null hypothesis of homoscedasticity, the product of Raux
2 (computed in step 2) and

the number of observations follows the chi-square distribution, with df equal to

the number of regressors in the model. If the computed chi-square value has a low

p value, we can reject the null hypothesis of homoscedasticity.7 As the results in

Table 5.3 show, the observed chi-square value (�nRaux
2 ) of about 16 has a very low

p value, suggesting that we can reject the null hypothesis of homoscedasticity. To
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4 The details of these and other tests can be found in Gujarati/Porter text, op cit., Chapter 11.

5 Although ei
2 are not the same thing as ui

2, in large samples the former are a good proxy.

6 If that is the case, the constant A1 would suggest that the error variance is constant or homoscedastic.

7 Recall the relationship between F and �2 statistics, which is: mFm n m, � �2 as n & �; that is, for large

denominator df, the numerator df times the F value is approximately equal to the chi-square value with the

numerator df, where m and n are the numerator and denominator df, respectively (see Statistical Appendix).



put it differently, the regression in Table 5.2 suffers from the problem of

heteroscedasticity.

A cautionary note: this test is a large sample test and may not be appropriate in

small samples.8

In sum, it probably seems that the abortion rate regression suffers from

heteroscedasticity.

Returning to our example, we obtain the results shown in Table 5.3.

White’s test of heteroscedasticity

We proceed in the spirit of the BP test and regress the squared residuals on the seven

regressors, the squared terms of these regressors, and the pairwise cross-product term

of each regressor, for a total of 33 coefficients.

As in the BP test, we obtain the R2 value from this regression and multiply it by the

number of observations. Under the null hypothesis that there is homoscedasticity, this
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Heteroskedasticity Test: Breusch–Pagan–Godfrey
F-statistic 2.823820 Prob. F(7,42) 0.0167
Obs*R-squared 16.00112 Prob. Chi-Square(7) 0.0251
Scaled explained SS 10.57563 Prob. Chi-Square(7) 0.1582

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 10/05/09 Time: 13:14
Sample: 1 50
Included observations: 50

Coefficient Std. Error t-Statistic Prob.

C 16.68558 110.1532 0.151476 0.8803

RELIGION –0.134865 0.631073 –0.213707 0.8318

PRICE 0.286153 0.162357 1.762492 0.0853

LAWS –8.566472 17.36257 –0.493387 0.6243

FUNDS 24.30981 20.33533 1.195447 0.2386

EDUC –1.590385 1.457893 –1.090879 0.2815

INCOME 0.004710 0.003325 1.416266 0.1641

PICKET –0.576745 0.308155 –1.871606 0.0682

R-squared 0.320022 Mean dependent var 41.89925
Adjusted R-squared 0.206693 S.D. dependent var 57.93043
S.E. of regression 51.59736 Akaike info criterion 10.87046
Sum squared resid 111816.1 Schwarz criterion 11.17639
Log likelihood –263.7616 Durbin–Watson stat 2.060808
F-statistic 2.823820 Prob(F-statistic) 0.016662

Table 5.3 The Breusch–Pagan test of heteroscedasticity.

8 One might argue that the data we have is not really a random sample, for we have all the states in the

Union. So, we actually have the whole population. But remember that the abortion rate data are only for one

year. It is quite possible that this rate will vary from year to year. Hence we can treat the data used for a single

year as a sample from all possible abortion rates for all the years that we have data.



product follows the chi-square distribution with df equal to the number of coefficients

estimated. The White test is more general and more flexible than the BP test.

In the present example, if we do not add the squared and cross-product terms to the

auxiliary regression, we obtain nR2 = 15.7812, which has a chi-square distribution with

7 df. The probability of obtaining such a chi-square value or greater is about 0.03,

which is quite low. This would suggest that we can reject the null hypothesis of

homoscedasticity.

If we add the squared and cross-product terms to the auxiliary regression, we obtain

nR2 = 32.1022, which has a chi-square value with 33 df.9 The probability of obtaining

such a chi-square value is about 0.51. In this case, we will not reject the null hypothesis.

As this exercise shows, White’s chi-square test is sensitive to whether we add or

drop the squared and cross-product terms from the auxiliary regression.10 Remember

that the White test is a large sample test. Therefore, when we include the regressors

and their squared and cross-product terms, which results in a loss of 33 df, the results

of the auxiliary regression are likely to be very sensitive, which is the case here.

To avoid the loss of so many degrees of freedom, White’s test could be shortened by

regressing the squared residuals on the estimated value of the regressand and its

squares.11 That is, we regress:

e Abortionf Abortionf vi i
2

1 2 3
2� � � �� � � (5.3)

where Abortionf = forecast value of abortion rate from Eq. (5.1). Since the estimated

abortion rate is a linear function of the regressors included in the model of Eq. (5.1), in

a way we are indirectly incorporating the original regressor and their squares in esti-

mating Eq. (5.3), which is in the spirit of the original White test. But note that in Eq.

(5.3) there is no scope for the cross-product term, thus obviating the cross-product

terms as in the original White test. Therefore the abridged White test saves several de-

grees of freedom.

The results of this regression are given in Table 5.4. The interesting statistic in this

table is the F statistic, which is statistically highly significant, for its p value is very low.

So the abridged White test reinforces the BP test and concludes that the abortion rate

function does indeed suffer from heteroscedasticity. And this conclusion is arrived at

with the loss of fewer degrees of freedom.

Notice that even though the F statistic is significant, the two partial slope coeffi-

cients are individually not significant. Incidentally, if you drop the squared

ABORTIONF term from Eq. (5.3), you will find that the ABORTIONF term is statisti-

cally significant.12 The reason for this is that the terms ABORTIONF and its square

are functionally related, raising the spectre of multicollinearity. But keep in mind that

multicollinearity refers to linear relationships between variables and not nonlinear re-

lationships, as in Eq. (5.3).
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9 This is because we have 7 regressors, 5 squared regressors and the cross-product of each regressor with

the other regressors. But note that we do not add the squared values of the dummy variables, for the square

of a dummy that takes a value of 1 is also 1. Also note that the cross-product of religion and income is the

same as the cross-product of income and religion, so avoid double-counting

10 That is why it is noted that the White test has weak (statistical) power. The power of a (statistical) test

is the probability of rejecting the null hypothesis when it is false.

11 See Jeffrey M. Wooldridge, Introductory Econometrics: A Modern Approach, 4th edn, South-Western

Publishing, 2009, p. 275.

12 The coefficient of Abortionf is 3.1801 with a t value of 3.20, which is significant at the 0.002 level.



It should be noted that whether we use the BP or White or any other test of

heteroscedasticity, these tests will only indicate whether the error variance in a spe-

cific case is heteroscedastic or not. But these tests do not necessarily suggest what

should be done if we do encounter heteroscedasticity.

5.4 Remedial measures

Knowing the consequences of heteroscedasticity, it may be necessary to seek remedial

measures. The problem here is that we do not know the true heteroscedastic vari-

ances, 
i
2 , for they are rarely observed. If we could observe them, then we could obtain

BLUE estimators by dividing each observation by the (heteroscedastic) 
i and esti-

mate the transformed model by OLS. This method of estimation is known as the

method of weighted least squares (WLS).13 Unfortunately, the true 
i
2 is rarely

known. Then what is the solution?

In practice, we make educated guesses about what 
i
2 might be and transform the

original regression model in such a way that in the transformed model the error vari-

ance might be homoscedastic. Some of the transformations used in practice are as fol-

lows:14

1 If the true error variance is proportional to the square of one of the regressors, we

can divide both sides of Eq. (5.1) by that variable and run the transformed regres-

sion. Suppose in Eq. (5.1) the error variance is proportional to the square of

income. We therefore divide Eq. (5.1) by the income variable on both sides and es-

timate this regression. We then subject this regression to heteroscedasticity tests,

such as the BP and White tests. If these tests indicate that there is no evidence of

heteroscedasticity, we may then assume that the transformed error term is

homoscedastic.
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Dependent Variable: RES^2
Method: Least Squares
Sample: 1 50
Included observations: 50
White Heteroskedasticity-Consistent Standard Errors & Covariance

Coefficient Std. Error t-Statistic Prob.

C 20.20241 27.09320 0.745663 0.4596

ABORTIONF –1.455268 3.121734 –0.466173 0.6432

ABORTIONF^2 0.107432 0.081634 1.316014 0.1946

R-squared 0.193083 Mean dependent var 41.89925
Adjusted R-squared 0.158746 S.D. dependent var 57.93043
S.E. of regression 53.13374 Akaike info criterion 10.84163
Sum squared resid 132690.1 Schwarz criterion 10.95635
Log likelihood –268.0406 Durbin–Watson stat 1.975605
F-statistic 5.623182 Prob(F-statistic) 0.006464

Table 5.4 Abridged White test.

13 Since each observation is divided (i.e. weighted) by 
i, an observation with large 
i will be discounted

more heavily than an observation with low 
i.

14 For details, see Gujarati/Porter, op cit., pp. 392–5.



2 If the true error variance is proportional to one of the regressors, we can use the

so-called square transformation, that is, we divide both sides of (5.1) by the

square root of the chosen regressor. We then estimate the regression thus trans-

formed and subject that regression to heteroscedasticity tests. If these tests are

satisfactory, we may rely on this regression.

There are practical problems in the applications of these procedures. First, how

do we know which regressor to pick for transformation if there are several

regressors? We can proceed by trial and error, but that would be a time-consum-

ing procedure. Second, if some of the values of the chosen regressor are zero, then

dividing by zero obviously will be problematic.

The choice of the regressor problem can sometimes be avoided by using the es-

timated Y value (i.e. �Yi ), which is a weighted average value of all the regressors in

the model, the weights being their regression coefficients, the bs.

It may be noted that all these methods of transformations are somewhat ad hoc.

But there is not much we can do about it, for we are trying to guess what the true

error variances are. All we can hope for is that the guess turns out to be reasonably

good.

To illustrate all these transformations would be time- and space-consuming.

However, we will illustrate just one of these transformations. If we divide (5.1) by

the estimated abortion rate from (5.1), we obtain results in Table 5.5.

We subjected this regression to Breusch–Pagan and White’s tests, but both

tests showed that the problem of heteroscedasticity still persisted.15

It should be added that we do the transformations for the purpose of getting rid

of hetersoscedasticity. We can get back to the original regression by multiplying

through by ABORTIONF the results in Table 5.5.

3 The logarithmic transformation: sometimes, instead of estimating regression

(5.1), we can regress the logarithm of the dependent variable on the regressors,

which may be linear or in log form. The reason for this is that the log transforma-

tion compresses the scales in which the variables are measured, thereby reducing a

tenfold difference between two values to a twofold difference. For example, the

number 80 is 10 times the number 8, but ln 80 (= 4.3280) is about twice as large as

ln 8 (= 2.0794).

The one caveat about using the log transformation is that we can take logs of

positive numbers only.

Regressing the log of the abortion rate on the variables included in Eq. (5.1), we

obtain the following results in Table 5.6.

Qualitatively these results are similar to those given in Table 5.1, in that the

price, income, and picket variables are statistically significant. However, the inter-

pretation of the regression coefficients is different from that in Table 5.1. The vari-

ous slope coefficient measure semi-elasticities – that is, the relative changes in

the abortion rate for a unit change in the value of the regressor.16 Thus the price

coefficient of –0.003 means if price goes up by a dollar, the relative change in the
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15 To save space, we do not present the detailed results. Readers can verify the conclusion by running

their own tests, using the data given in Table 5.1.

16 Recall our discussion about the semi-log models.
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Dependent Variable: ABORTION/ABORTIONF
Method: Least Squares
Sample: 1 50
Included observations: 50

Coefficient Std. Error t-Statistic Prob.

1/ABORTIONF 12.81786 11.22852 1.141545 0.2601

RELIGION/ABORTIONF 0.066088 0.068468 0.965239 0.3400

PRICE/ABORTIONF –0.051468 0.017507 –2.939842 0.0053

LAWS/ABORTIONF –1.371437 1.819336 –0.753812 0.4552

FUNDS/ABORTIONF 2.726181 3.185173 0.855897 0.3969

EDUC/ABORTIONF –0.228903 0.147545 –1.551408 0.1283

INCOME/ABORTIONF 0.002220 0.000481 4.616486 0.0000

PICKET/ABORTIONF –0.082498 0.031247 –2.640211 0.0116

R-squared 0.074143 Mean dependent var 1.011673
Adjusted R-squared –0.080166 S.D. dependent var 0.334257
S.E. of regression 0.347396 Akaike info criterion 0.868945
Sum squared resid 5.068735 Schwarz criterion 1.174869
Log likelihood –13.72363 Durbin–Watson stat 2.074123

Note: Abortionf is the abortion rate forecast from Eq. (5.1)

Table 5.5 Transformed Eq. (5.1).

Dependent Variable: LABORTION
Method: Least Squares
Date: 10/09/09 Time: 14:45
Sample: 1 50
Included observations: 50

Coefficient Std. Error t-Statistic Prob.

C 2.833265 0.755263 3.751362 0.0005

RELIGION 0.000458 0.004327 0.105742 0.9163

PRICE –0.003112 0.001113 –2.795662 0.0078

LAWS –0.012884 0.119046 –0.108226 0.9143

FUNDS 0.087688 0.139429 0.628907 0.5328

EDUC –0.014488 0.009996 –1.449417 0.1546

INCOME 0.000126 2.28E–05 5.546995 0.0000

PICKET –0.006515 0.002113 –3.083638 0.0036

R-squared 0.589180 Mean dependent var 2.904263
Adjusted R-squared 0.520710 S.D. dependent var 0.511010
S.E. of regression 0.353776 Akaike info criterion 0.905342
Sum squared resid 5.256618 Schwarz criterion 1.211266
Log likelihood –14.63355 Durbin–Watson stat 1.929785
F-statistic 8.604924 Prob(F-statistic) 0.000002

Note : Labortion = log of abortion

Table 5.6 Logarithmic regression of the abortion rate.



abortion rate is –0.003 or about –0.3%. All other coefficients are to be interpreted

similarly.17

When this regression was subjected to Breusch–Pagan and White’s test (with-

out squared and cross-product terms), it was found that this regression did not

suffer from heteroscedasticity. Again, this result should be accepted cautiously,

for our “sample” of 51 observations may not be large enough.

This conclusion raises an important point of about heteroscedasticity tests. If

one or more of these tests indicate that we have the problem of heteroscedasticity,

it may not be heteroscedasticity per se but a model specification error, a topic we

will discuss in Chapter 7 in some detail.

White’s heteroscedasticity-consistent standard errors or robust
standard errors18

If the sample size is large, White has suggested a procedure to obtain

heteroscedasticity-corrected standard errors. In the literature these are known as

robust standard errors. White’s routine is now built in several software packages. The

procedure does not alter the values of the coefficients given in Table 5.2, but corrects

the standard errors to allow for heteroscedasticity. Using Eviews, we obtain the results

shown in Table 5.7.

If you compare these results with those given in Table 5.2, you will see some

changes. The price variable is now less significant than before, although the income

and picket coefficients have about the same level of significance. But notice that the es-

timated regression coefficients remain the same in the two tables.

But do not forget that the White procedure is valid in large samples, which may not

be the case in the present example. Let us revisit the wage function first considered in

Chapter 1 and the hours worked function discussed in Chapter 4; in both cases our

samples are reasonably large.

Wage function revisited

In Table 1.2 we presented a wage function of 1,289 workers. Since the data used in this

table are cross-sectional, it is quite likely that the regression results suffer from

heteroscedasticity. To see if this is the case, we used the BP and White’s tests, which

gave the following results.

BP test: When the squared residuals obtained from the model in Table 1.2 were re-

gressed on the variables included in the wage regression, we obtain an R2 value of

0.0429. Multiplying this value by the number of observations, 1,289, we obtained a

chi-square value of about 55. For 5 df, the number of regressors in the wage function,

the probability of obtaining such a chi-square value or greater was practically zero,

suggesting that the wage regression in Table 1.2 did indeed suffer from

heteroscedasticity.

White’s test of heteroscedasticity: To see if the BP test results are reliable, we used

White’s test, both excluding and including the cross-product terms. The results were

as follows. Excluding the cross-product terms, nR2 62 9466� . , which has the
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17 But recall the warning given in the previous chapter about interpreting dummy variables in semi-log

regressions.

18 Details can be found in Gujarati/Porter, op cit., p. 391.



chi-square distribution with 5 df. The probability of obtaining such a chi-square value

or greater is practically zero, thus confirming that the wage regression did in fact have

heteroscedasticity. When we added the squared and cross-product terms of the

regressors, we obtained nR2 79 4311� . , which has a chi-square distribution with 17 df

(5 regressors, 2 squared regressors, and 10 cross-product terms of the regressors). The

probability of obtaining a chi-square value of as much as 79.4311 or greater is practi-

cally zero.

In sum, there is strong evidence that the wage regression in Table 1.2 suffered from

heteroscedasticity.

Instead of transforming the wage regression in Table 1.2 by dividing it by one or

more regressors, we can simply correct the problem of heteroscedasticity by comput-

ing White’s robust standard errors. The results are given in Table 5.8.

If you compare these results with those in Table 1.2, you will see that the regression

coefficients are the same, but some standard errors have changed, which then changed

the t values.

Hours worked function revisited

Consider the results given in Table 4.2 about hours worked by 753 married women.

These results are not corrected for heteroscedasticity. On the basis of the BP test and

the White test, with or without squared and cross-product terms, it was found that the

hours worked function in Table 4.2 was plagued by heteroscedasticity.19
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Dependent Variable: ABORTION RATE
Method: Least Squares
Sample: 1 50
Included observations: 50
White Heteroskedasticity-Consistent Standard Errors & Covariance

Coefficient Std. Error t-Statistic Prob.

C 14.28396 14.90146 0.958561 0.3433

RELIGION 0.020071 0.083861 0.239335 0.8120

PRICE –0.042363 0.025944 –1.632868 0.1100

LAWS –0.873102 1.795849 –0.486178 0.6294

FUNDS 2.820003 3.088579 0.913042 0.3664

EDUC –0.287255 0.176628 –1.626329 0.1114

INCOME 0.002401 0.000510 4.705512 0.0000

PICKET –0.116871 0.040420 –2.891415 0.0060

R-squared 0.577426 Mean dependent var 20.57800
Adjusted R-squared 0.506997 S.D. dependent var 10.05863
S.E. of regression 7.062581 Akaike info criterion 6.893145
Sum squared resid 2094.962 Schwarz criterion 7.199069
Log likelihood –164.3286 Durbin–Watson stat 2.159124
F-statistic 8.198706 Prob(F-statistic) 0.000003

Table 5.7 Robust standard errors of the abortion rate regression.

19 For the BP test nR2 = 38.76, which has a chi-square distribution with 10 df. The probability of

obtaining such a chi-square value or greater is almost zero. For the White test, nR2 = 40.19 without the



Since the sample is reasonably large, we can use the White procedure to obtain

heteroscedasticity-corrected standard errors. The results are given in Table 5.9.

If you compare these results with those given in Table 4.2, you will see a few changes

in the estimated standard errors and t values. Family income and kids under 6 vari-

ables are now less significant than before, whereas the unemployment rate variable is a

bit more significant.

The point to note here is that if the sample size is reasonably large, we should pro-

duce White’s heteroscedasticity-corrected standard errors along with the usual OLS

standard errors to get some idea about the presence of heteroscedasticity.

5.5 Summary and conclusions

In this chapter we considered one of the violations of the classical linear regression

model, namely, heteroscedasticity, which is generally found in cross-sectional data.

Although heteroscedasticity does not destroy the unbiasedness and consistency prop-

erties of OLS estimators, the estimators are less efficient, making statistical inference

less reliable if we do not correct the usual OLS standard errors.

Before we solve the problem of heteroscedasticity, we need to find out if we have the

problem in any specific application. For this purpose we can examine the squared re-

siduals from the original model or use some formal tests of heteroscedasticity, such as

the Breusch–Pagan and White’s tests. If one or more of these tests show that we have

the heteroscedasticity problem, we can then proceed to remediation of the problem.
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Dependent Variable: W
Method: Least Squares
Sample: 1 1289
Included observations: 1289
White Heteroskedasticity-Consistent Standard Errors & Covariance

Coefficient Std. Error t-Statistic Prob.

C –7.183338 1.090064 –6.589834 0.0000

FEMALE –3.074875 0.364256 –8.441521 0.0000

NONWHITE –1.565313 0.397626 –3.936647 0.0001

UNION 1.095976 0.425802 2.573908 0.0102

EDUC 1.370301 0.083485 16.41372 0.0000

EXPER 0.166607 0.016049 10.38134 0.0000

R-squared 0.323339 Mean dependent var 12.36585
Adjusted R-squared 0.320702 S.D. dependent var 7.896350
S.E. of regression 6.508137 Akaike info criterion 6.588627
Sum squared resid 54342.54 Schwarz criterion 6.612653
Log likelihood –4240.370 Durbin–Watson stat 1.897513
F-statistic 122.6149 Prob(F-statistic) 0.000000

Table 5.8 Heteroscedasticity-corrected wage function.

squared and cross-product terms, and 120.23 when such terms are added. In both cases, the probability of

obtaining such chi-square values or greater is practically zero.



The problem of heteroscedasticity can be solved if we know the heteroscedastic

variances, 
i
2 , for in that case we can transform the original model (5.1) by diving it

through by 
i and estimate the transformed model by OLS, which will produce esti-

mators that are BLUE. This method of estimation is known as weighted least squares

(WLS). Unfortunately, we rarely, if ever, know the true error variances. Therefore we

need to find the second best solution.

Using some educated guesses of the likely nature of 
i
2 we transform the original

model, estimate it, and subject it to heteroscedasticity tests. If these tests suggest that

there is no heteroscedasticity problem in the transformed model, we may not reject

the transformed model. If, however, the transformed model shows that the problem of

heteroscedasticity still persists, we can look for another transformation and repeat the

cycle again.

However, all this labor can be avoided if we have a sufficiently large sample, be-

cause in that case we can obtain heteroscedasticity-corrected standard errors, using

the procedure suggested by White. The corrected standard errors are known as

robust standard errors. Nowadays there are several micro data sets that are pro-

duced by several agencies that have a large number of observations, which makes it

possible to use the robust standard errors in regression models suspected of the

heteroscedasticity problem.
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Dependent Variable: HOURS
Method: Least Squares
Sample (adjusted): 1 428
Included observations: 428 after adjustments
White Heteroskedasticity-Consistent Standard Errors & Covariance

Coefficient Std. Error t-Statistic Prob.

C 8484.523 1154.479 7.349222 0.0000

AGE –17.72740 5.263072 –3.368262 0.0008

EDUC –27.03403 15.70405 –1.721468 0.0859

EXPER 24.20345 4.953720 4.885914 0.0000

FAMINC 0.013781 0.007898 1.744916 0.0817

HUSHRS –0.486474 0.073287 –6.637928 0.0000

HUSWAGE –144.9734 17.58257 –8.245293 0.0000

KIDSLT6 –180.4415 105.0628 –1.717462 0.0866

WAGE –47.43286 9.832834 –4.823925 0.0000

MTR –6351.293 1206.585 –5.263859 0.0000

UNEM –16.50367 9.632981 –1.713246 0.0874

R-squared 0.335786 Mean dependent var 1302.930
Adjusted R-squared 0.319858 S.D. dependent var 776.2744
S.E. of regression 640.1992 Akaike info criterion 15.78680
Sum squared resid 1.71E+08 Schwarz criterion 15.89112
Log likelihood –3367.375 Durbin–Watson stat 2.078578
F-statistic 21.08098 Prob(F-statistic) 0.000000

Table 5.9 Heteroscedasticity-corrected hours function.



Exercises

5.1 Consider the wage model given in Table 1.2. Replicate the results of this table,

using log of wage rates as the regressand. Apply the various diagnostic tests discussed

in the chapter to find out if the log wage function suffers from heteroscedasticity. If so,

what remedial measures would you take? Show the necessary calculations.

5.2 Refer to the hours worked regression model given in Table 4.2. Use log of hours

worked as the regressand and find out if the resulting model suffers from

heteroscedasticity. Show the diagnostic tests you use. How would you resolve the

problem of heteroscedasticity, if it is present in the model? Show the necessary

calculations.

5.3 Do you agree with the following statement: “Heteroscedasticity has never been a

reason to throw out an otherwise good model”?20

5.4 Refer to any textbook on econometrics and learn about the Park, Glejser,

Spearman’s rank correlation, and Goldfeld–Quandt tests of heteroscedasticity. Apply

these tests to the abortion rate, wage rate, and hours of work regressions discussed in

the chapter. Find out if there is any conflict between these tests and the BP and White

tests of heteroscedasticity.

5.5 Refer to Table 5.5. Assume that the error variance is related to the square of

income instead of to the square of ABORTIONF. Transform the original abortion rate

function replacing ABORTIONF by income and compare your results with those

given in Table 5.5. A priori, would you expect a different conclusion about the pres-

ence of heteroscedasticity? Why or why not. Show the necessary calculations.
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20 N. Gregory Mankiw, A quick refresher course in macroeconomics, Journal of Economic Literature,

vol. XXVIII, , p. 1648.



6
Regression diagnostic III: autocorrelation

A common problem in regression analysis involving time series data is

autocorrelation. Recall that one of the assumptions of the classical linear regression

model (CLRM) is that the error terms, ut, are uncorrelated – that is the error term at

time t is not correlated with the error term at time (t – 1) or any other error term in the

past. If the error terms are correlated, the following consequences follow:1

1 The OLS estimators are still unbiased and consistent.

2 They are still normally distributed in large samples.

3 But they are no longer efficient. That is, they are no longer BLUE (best linear unbi-

ased estimator). In most cases OLS standard errors are underestimated, which

means the estimated t values are inflated, giving the appearance that a coefficient

is more significant than it actually may be.

4 As a result, as in the case of heteroscedasticity, the hypothesis-testing procedure

becomes suspect, since the estimated standard errors may not be reliable, even as-

ymptotically (i.e. in large samples). In consequence, the usual t and F tests may not

be valid.

As in the case of heteroscedasticity, we need to find out if autocorrelation exists in a

specific application and take corrective action or find alternative estimating proce-

dures that will produce BLUE estimators. Before we undertake this task, let us con-

sider a concrete example.

6.1 US consumption function, 1947–2000

Table 6.1 gives data on real consumption expenditure (C), real disposable personal

income (DPI), real wealth (W) and real interest rate (R) for the USA for the years

1947–2000, the term “real” meaning “adjusted for inflation”.2 Table 6.1 can be found

on the companion website.

Now consider the following regression model:

ln ln lnC B B DPI B W B R ut t t t t� � � � �1 2 3 4 (6.1)
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1 For details, see Gujarati/Porter, op cit., Chapter 12.

2 The data were obtained from various government sources, such as the Department of Commerce,

Federal Reserve Bank and the Economic Report of the President.



Notice that we have put the subscript t to indicate that we are dealing with time

series data. Also note that ln stands for natural logarithm.

For simplicity of explanation we will call Eq. (6.1) the consumption function. The

explanatory variables, or regressors, in this equation are the commonly used variables

in the consumption function, although there may be variations in the choice of DPI,

wealth, and interest rate. Refer to any macroeconomics textbook for the theory behind

the consumption function.

Observe that we have introduced C, DPI, and W in log forms but R in linear form be-

cause some of the real interest rates were negative. B2 and B3 are the elasticities of con-

sumption expenditure with respect to disposable income and wealth, respectively, and

B4 is semi-elasticity with respect to real interest rate (recall our discussion about func-

tional forms of regression models in Chapter 2).3 A priori, we expect the income and

wealth elasticities to be positive and the interest rate semi-elasticity to be negative.

Regression results

The results of the estimated regression are given in Table 6.2.

Evaluation of results

As expected, the slope coefficients have the expected signs. If the standard assump-

tions of CLRM hold, all the estimated coefficients are “highly” statistically significant,

for the estimated p values are so low. The income elasticity of 0.8 suggests that, holding

other variables constant, if real personal disposal income goes up by 1%, mean real

consumption expenditure goes up by about 0.8%. The wealth coefficient of about 0.20

suggests that if real wealth goes up by 1%, mean real consumption expenditure goes up

by about 0.2%, ceteris paribus. The interest semi-elasticity suggests that if interest rate
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Dependent Variable: LOG(C)
Method: Least Squares
Sample: 1947 2000
Included observations: 54

Coefficient Std. Error t-Statistic Prob.

C –0.467711 0.042778 –10.93343 0.0000

L(DPI) 0.804873 0.017498 45.99836 0.0000

L(W) 0.201270 0.017593 11.44060 0.0000

R –0.002689 0.000762 –3.529265 0.0009

R-squared 0.999560 Mean dependent var 7.826093
Adjusted R-squared 0.999533 S.D. dependent var 0.552368
S.E. of regression 0.011934 Akaike info criterion –5.947703
Sum squared resid 0.007121 Schwarz criterion –5.800371
Log likelihood 164.5880 Durbin–Watson stat 1.289219
F-statistic 37832.59 Prob(F-statistic) 0.000000
Note: L stands for natural log.

Table 6.2 Regression results of the consumption function.

3 In the analysis of the consumption function it is common to use the log or semi-log forms, for the

coefficients can be interpreted as elasticities or semi-elasticities.



goes up by one percentage point (not 1%), mean real consumption expenditure goes

down by about 0.26%, ceteris paribus.

The high R2 and other statistics given in the above table would suggest that the

fitted model gives an excellent fit, although we should be wary of an R2 value of practi-

cally one. This is because of the possibility of spurious correlation which arises when

both the regressand and regressors are growing over time. But we will discuss this

topic in greater detail in the chapter on time series econometrics (Chapter 13).

Since we are dealing with time series data, we have to guard against auto-, or serial,

correlation. If there is autocorrelation in the error term, the estimated standard errors

and, ipso facto, the estimated t values will be suspect. Therefore, before we accept the

results given in the preceding table, we need to check for the presence of

autocorrelation.

6.2 Tests of autocorrelation

Although there are several tests of autocorrelation, we will discuss only a few here,

namely, the graphical method, the Durbin–Watson test, and the Breusch–Godfrey

(BG) test.4

Graphical method

In evaluating regression results it is always good practice to plot the residuals from the

estimated model for clues regarding possible violation of one or more OLS assump-

tions. As one author notes: “Anyone who tries to analyse a time series without plotting

it is asking for trouble.”5

For example, in our discussion of heteroscedasticity, we plotted the squared residu-

als against the estimated value of the regressand to find some pattern in these residu-

als, which may suggest the type of transformation one can make of the original model

so that in the transformed model we do not face heteroscedasticity.

Since autocorrelation refers to correlation among the error terms, ut, a rough and

ready method of testing for autocorrelation is to simply plot the values of ut chrono-

logically. Unfortunately, we do not observe uts directly. What we observe are their

proxies, the ets, which we can observe after we estimate the regression model.

Although the ets are not the same thing as uts, they are consistent estimators of the

latter, in the sense that as the sample size increases, ets converge to their true values,

uts. Our sample of 54 observations may not be technically large, but they cover the

bulk of the post-Second World War period data. Even if we extend our sample to the

end of 2009, we will have at most nine more observations. Therefore we cannot do

much about our sample size.

By plotting the data on ets chronologically we can get a visual impression of the pos-

sibility of autocorrelation. Doing so, we obtain Figure 6.1.

This figure shows the residuals S1 obtained from regression (6.1) and the standard-

ized residual, S2, which are simply S1 divided by the standard error of the regression.

For scale comparability, we have multiplied S1 by 100.
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4 For the various methods of detecting autocorrelation, see Gujarati/Porter, op cit., Chapter 12, pp.

429–40.

5 Chris Chatfield, The Analysis of Time Series: An Introduction, 6th edn, Chapman and Hall, 2004, p. 6.



The S1 and S2 curves show a see-saw pattern, suggesting that the residuals are cor-

related. This can be seen more clearly if we plot residuals at time t against residuals at

time (t – 1), as in Figure 6.2.

The sketched regression line in Figure 6.2 suggests that the residuals are positively

correlated.
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Durbin–Watson d test6

The most celebrated, and often over-used, test for detecting serial correlation was de-

veloped by statisticians Durbin and Watson, and is popularly known as the

Durbin–Watson d statistic, which is defined as:

d
e e

e

t tt

t n

tt

t n
�

� ��
�

�
�

	
	

( )1
2

2

2
1

(6.2)

This is the ratio of the sum of squared differences in successive residuals to the resid-

ual sum of squares. Note that the df in the numerator is (n – 1), as we lose one observa-

tion in taking successive differences of residuals. Also note that the d value always lies

between 0 and 4.7

The d value for our example is 1.2829 �1.28. What do we do with this value?

Before we see how the d statistic works, it is very important to bear in mind the as-

sumptions underlying the d statistic. These assumptions are:

1 The regression model includes an intercept term.8

2 The explanatory variables, or regressors, are fixed in repeated sampling.

3 The error term ut follows the first-order autoregressive (AR1) scheme:

u u vt t t� ��� 1 (6.3)

where � (rho) is the coefficient of autocorrelation and it lies in the range

� � �1 1� . It is called first-order AR because it involves only the current and

one-period lagged error term. vt is a random error term.

4 The error term ut is normally distributed.

5 The regressors do not include the lagged value(s) of the dependent variable, Yt,

that is, regressors do not include Yt�1, Yt�2 and other lagged terms of Y.

As you can see, these assumptions may be quite restrictive in practice.

The exact probability distribution of d is difficult to derive because it depends in a

complicated way on the values taken by the regressors. And since the values taken by

regressors are sample-specific, there is no unique way to derive the sampling distribu-

tion of d.

However, based on the sample size and the number of regressors, Durbin and

Watson were able to establish two critical values of the d statistic, dL and dU, called the

lower and upper limits, so that if the computed d value lies below the lower limit, or

above the upper limit, or in between the two limits, a decision could be made about the

presence of autocorrelation.

The decision rules are as follows:

1 If d < dL, there probably is evidence of positive autocorrelation.

2 If d > dU, there probably is no evidence of positive autocorrelation.
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6 For details, see Gujarati/Porter, op cit., Chapter 12.

7 For details, see Gujarati/Porter, op cit., Chapter 12, pp. 435–6.

8 If the constant term is absent, Farebrother has modified the d test to take this into account. For further

details, see Gujarati/Porter, op cit., p. 434.



3 If d d dL U� � , no definite conclusion about positive autocorrelation may be

made.

4 If d d dU U� � �4 , there is probably no evidence of positive or negative

autocorrelation.

5 If 4 4� � � �d d dU L , no definite conclusion about negative autocorrelation may

be made.

6 If 4 4� � �d dL , there probably is evidence of negative autocorrelation.

As noted, the d value lies between 0 and 4. The closer it is to zero, the greater is the

evidence of positive autocorrelation, and the closer it is to 4, the greater is the evidence

of negative autocorrelation. If d is about 2, there is no evidence of positive or negative

(first-) order autocorrelation.

Durbin and Watson prepared tables that give the lower and upper limits of the d

statistic for a selected number of observations (up to 200) and a number of regressors

(up to 10) and for 5% and 1% levels of significance.

Returning to our consumption function, we have n = 54, X (number of regressors) =

3. The 5% critical d values for this combination are (using n = 55): (1.452, 1.681). Since

the computed d value is about 1.28, it lies below the lower limit, leading to the conclu-

sion that we probably have positive autocorrelation in the error term.

The 1% critical d values are (1.284, 1.506). The computed d value is slightly below

the lower limit, again suggesting that our regression probably suffers from positive

(first-order) autocorrelation.

Breusch–Godfrey (BG) general test of autocorrelation9

To avoid some of the restrictive features of the d test, Breusch and Godfrey have devel-

oped a test of autocorrelation that is more general in that it allows for (1) lagged values

of the dependent variables to be included as regressors, (2) higher-order auto-

regressive schemes, such as AR (2) and AR (3), and (3) moving average terms of the

error term, such as ut�1, ut�2 and so on.10

To illustrate the BG test, suppose in Eq. (6.1), the error term follows the following

structure:

u u u u vt t t p t p t� � � � �� � �� � �1 1 2 2 � (6.4)

where vt is the error term that follows the usual classical assumptions.

Equation (6.4) is an AR (p) autoregressive structure where the current error term

depends on previous error terms up to p lags. The precise value of p is often a trial and

error process, although in most economic time series one does not have to choose a

high value of p.

The null hypothesis H0 is:

� � �1 2 0� � � �� p (6.5)

That is, there is no serial correlation of any order.
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9 For details, see Gujarati/Porter, op cit., pp. 438–40.

10 An AR(2) scheme, for example, involves regressing the current value of variable on its values lagged

one and two periods. In an MA(1), for example, the current error term and its immediate previous value are

involved. MA is discussed further in Chapter 16.



In practice we only observe ets, the residuals, which are estimators of the uts. There-

fore the BG test involves the following steps:

1 Estimate (6.1) by OLS and obtain the residuals, et.

2 Regress et on the regressors in model (6.1) and the p autoregressive terms given in

(6.4), that is, run the following regression

e A A DPI A W A R C e

C e C e

t t t t t

t p t p

� � � � �

� � � �

�

� �

1 2 3 4 1 1

2 2

ln ln

� vt

(6.6)

and obtain R2 from this auxiliary regression.

3 If the sample size is large (technically, infinite), BG have shown that

( ) ~n p R p� 2 2� (6.7)

That is, in large sample, (n – p) times R2 follows the chi-square distribution with p

degrees of freedom.

4 As an alternative, we can use the F value obtained from regression (6.6) to test the

null hypothesis given in (6.5). This F value has ( , )p n k p� � degrees of freedom in

the numerator and denominator, respectively, where k represents the number of

parameters in (6.1) (including the intercept term).

Therefore, if in an application the chi-square value thus computed exceeds the crit-

ical chi-square value at the chosen level of significance, we can reject the null hypothe-

sis of no autocorrelation, in which case at least one p value in (6.6) is statistically

significantly different from zero. In other words, we have some form of auto-

correlation. Most statistical packages now present the p value of the estimated

chi-square value, so we need not choose the level of significance arbitrarily.

Similarly, if the computed F value exceeds the critical F value for a given level of sig-

nificance, we can also reject the null hypothesis of no autocorrelation. Instead of

choosing the level of significance, we can rely on the p value of the estimated F statistic

and reject the null hypothesis if this p value is low.

These two tests give similar results, which should not be surprising in view of the re-

lationship between the F and �2 statistics.11

Before we illustrate the test, the following features of the BG test may be noted:

1 The test requires that the error variance of ut, given the values of the regressors

and the lagged values of the error term, is homoscedastic. If that is not the case, we

will have to use heteroscedasticity-corrected variance, such as the White’s robust

error terms.

2 A practical problem in the application of the BG test is the choice of the number of

lagged error terms, p, in Eq. (6.4). The value of p may depend on the type of time

series. For monthly data, we may include 11 lagged error terms, for quarterly data

we may include three lagged error terms, and for annual data, one lagged error

term may suffice. Of course, we can choose the lag length by trial and error and
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11 This relationship is as follows: For large denominator df, the numerator df times the F value is

approximately equal to the chi-square value with the numerator df, where m and n are denominator and

numerator df. respectively.



choose the value of p based on the Akaike and Schwarz information criteria (see

Chapter 2). The lower the value of these criteria, the better is the model.

Returning to our consumption function, the results of regression (6.6) are as fol-

lows: For illustration, we only include one lagged value of the residuals in this regres-

sion because we have annual data. The results are shown in Table 6.3.

As these results show, there is strong evidence of (first-order) autocorrelation, for

both the F and �2 values are highly significant because their p values are so low.

We also estimated the model including 2 and 3 lagged error terms. The Akaike in-

formation criterion gave these values as –6.01, –6.00, and –5.96 for one, two, and three

lagged error terms in Eq. (6.6). Although there is not a substantial difference in these

values, on the basis of the Akaike criterion, we choose the model with the largest nega-

tive value, which is –6.01, thus justifying the use of one lagged error term in Eq. (6.6).12

Also, the coefficients of the second and third lagged terms were statistically

insignificant.

6.3 Remedial measures

If we find autocorrelation in an application, we need to take care of it, for depending on

its severity, we may be drawing misleading conclusions because the usual OLS stan-

dard errors could be severely biased. Now the problem we face is that we do not know

the correlation structure of the error terms ut, since they are not directly observable.
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Breusch–Godfrey Serial Correlation LM Test:
F-statistic 5.345894 Prob. F(1,49) 0.0250
Obs*R-squared 5.311869 Prob. Chi-Square(1) 0.0212

Test Equation:
Dependent Variable: RESID (et)
Method: Least Squares
Sample: 1947 2000
Presample missing value lagged residuals set to zero.

Coefficient Std. Error t-Statistic Prob.

C 0.000739 0.041033 0.018016 0.9857

L(DPI) –0.000259 0.016784 –0.015433 0.9877

L (w) 0.000131 0.016875 0.007775 0.9938

R 0.000181 0.000735 0.246196 0.8066

RESID(-1) 0.330367 0.142885 2.312119 0.0250

R-squared 0.098368 Mean dependent var –7.07E–19
Adjusted R-squared 0.024765 S.D. dependent var 0.011591
S.E. of regression 0.011447 Akaike info criterion –6.014218
Sum squared resid 0.006420 Schwarz criterion –5.830053
Log likelihood 167.3839 Durbin–Watson stat 1.744810
F-statistic 1.336473 Prob(F-statistic) 0.269759

Table 6.3 BG test of autocorrelation of the consumption function.

12 Note that –5.96 is greater than –6.0, which is greater than –6.1.



Hence, as in the case of heteroscedasticity, we need to resort to some educated

guesswork or some kind of transformation of the original regression model so that in

the transformed model we do not face the serial correlation problem. There are several

methods that we could try.

First-difference transformation
Suppose autocorrelation is of AR(1) type, as in Eq. (6.3), which we can write as:

u u vt t t� ��� 1 (6.8)

If we know the value of �, we can subtract from the current value of the error term �
times the previous value of the error term. The resulting error term, vt will satisfy the

standard OLS assumptions. Therefore we can transform the original regression as:
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The last term in this equation is simply vt, which now is free from serial correlation.

The transformed model can therefore be estimated by OLS. All we have to do is

transform each variable by subtracting from its current value� times its previous value

and run the regression. The estimators obtained from the transformed model are

BLUE.

But note that in this transformation we lose one observation, because for the very

first observation there is no antecedent. If the sample is reasonably large, loss of one

observation may not matter much. But if the sample size is small, the loss of the first

observation means the estimators will not be BLUE. However, there is a procedure,

called the Prais–Winsten transformation, that can take into account the first obser-

vation.13

Now the question is: how do we estimate�? We know that � � �1 1� . Therefore, any

value in this range can be used to transform the original model, as in (6.9). But which

one value should we choose, for literally there is an infinite number of values in this

range?

Many economic time series are highly inter-correlated, suggesting that perhaps a

value � �1 may be appropriate to transform the original model. If this is indeed the

case, Eq. (6.9) can be written as:

% % % %ln ln lnC B DPI B W B R vt t t t t� � � �2 3 4 (6.10)

where % is the first-difference operator. %ln (ln ln )C C Ct t t� � �1 , etc.

Equation (6.10) is called, appropriately, the first-difference transformation. By

contrast, Eq. (6.1) is called the level form regression.

In estimating (6.10), notice that there is no intercept in it. Therefore, in estimating

this model you have to suppress the intercept term. Most software packages can do

that without much trouble.

Using Eviews, the empirical counterpart of Eq. (6.10) is shown in Table 6.4.
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see Gujarati/Porter, op cit., pp. 442–3.



If we test this regression for autocorrelation using the BG test, we find that there is

no evidence of autocorrelation, whether we use 1, 2, or more lagged error terms in Eq.

(6.4).

If we compare the regression results of the original regression given in Table 6.2 and

those obtained from first difference transformation given in Table 6.4, we see that the

income elasticity is more or less the same, but the wealth elasticity, although statisti-

cally significant, is almost half in value and the interest rate semi-elasticity is practi-

cally zero and has the wrong sign. This outcome could be due to the wrong value of �
chosen for transformation. But more fundamentally it may have to do with the

stationarity of one or more variables, a topic that we explore in depth in the chapter

on time series econometrics (Chapter 13).

It should be emphasized that the R2 values in the level form (i.e. given in Table 6.2)

and in the first-difference form (i.e. Table 6.4) are not directly comparable because the

dependent variable in the two models is different. As noted before, to compare two or

more R2 values, the dependent variable must be the same.

Generalized transformation
Since it will be a waste of time to try several values of� to transform the original model,

we may proceed somewhat analytically. For instance, if the AR(1) assumption is ap-

propriate, we can regress et on et–1, using et as a proxy for ut, an assumption that may

be appropriate in large samples, because in large samples et is a consistent estimator of

�. That is we estimate:

e et t� ���� 1 error (6.11)

where �� is an estimator of � given in (6.8).

Once we obtain an estimate of � from Eq. (6.11), we can use it to transform the

model as in Eq. (6.9) and estimate the model thus transformed.

The estimates of the parameters thus obtained are known as feasible generalized

least squares (FGLS) estimators.

Using our data, it can be shown that � .� � 03246.
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Dependent Variable: D(LC)
Method: Least Squares
Sample (adjusted): 1948 2000
Included observations: 53 after adjustments

Coefficient Std. Error t-Statistic Prob.

D(LDPI) 0.848988 0.051538 16.47313 0.0000

D(LW) 0.106360 0.036854 2.885941 0.0057

D(R) 0.000653 0.000826 0.790488 0.4330

R-squared 0.614163 Mean dependent var 0.035051
Adjusted R-squared 0.598730 S.D. dependent var 0.017576
S.E. of regression 0.011134 Akaike info criterion –6.102765
Sum squared resid 0.006198 Schwarz criterion –5.991239
Log likelihood 164.7233 Hannan–Quinn criter.–6.059878
Durbin–Watson stat 2.026549

Note: D stands for the first difference operator % and L stands for natural logarithm.

Table 6.4 First difference transform of the consumption function.



Another method of obtaining an estimate of�, especially in large samples, is to use

the following relationship between � and Durbin–Watson d, which is:

� � �1
2

d
(6.12)

where d is the DW d obtained from the original regression. In our example, d was

found to be 1.2892. Therefore we get

�
.

.� � � �1
12892

2
03554

We can use this estimated value of � to transform the original model.

The estimates obtained from Eqs. (6.11) and (6.12) are about the same. It should be

noted that �� estimated from (6.11) or (6.12) provides a consistent estimate of the true�.

For illustration we use �� = 0.3246 and obtain the results shown in Table 6.5.

Now we analyze the residuals from this regression for serial correlation, using, say,

the BG test. Using 1 and 2 lagged terms in Eq. (6.6), it was found that the estimated BG

statistic was not statistically significant, indicating that the residuals in the AR(1)

transformation were not autocorrelated: the BG chi-square value allowing for one

lagged residual term was 0.0094, whose probability was about 92%.

If you compare the results in this table with those given in Table 6.2, you will see

that the standard errors of the coefficients in the two tables are substantially different,

but keep in mind that Table 6.2 does not correct for autocorrelation, whereas Table

6.5 does. The magnitudes of the income and wealth elasticities are about the same in

the two tables, although the standard errors, and therefore the t values, are different.

The lower absolute t values in Table 6.5 suggest that the original OLS standard

errors were underestimated, which follows our discussion of the consequences of OLS

estimation in the presence of autocorrelation.

The interest rate coefficient in the transformed model has the correct sign, but it is

statistically insignificant. Again this may be due to the reasons discussed previously.
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Method: Least Squares
Date: 10/18/09 Time: 19:12
Sample (adjusted): 1948 2000
Included observations: 53 after adjustments

Coefficient Std. Error t-Statistic Prob.

C –0.279768 0.033729 –8.294681 0.0000

LDPI–0.3246*LDPI(–1) 0.818700 0.021096 38.80871 0.0000

LW–0.3246*LW(–1) 0.183635 0.020986 8.750235 0.0000

R–0.3246*R(–1) –1.84E–05 0.000969 –0.019017 0.9849

R-squared 0.999235 Mean dependent var 5.309128
Adjusted R-squared 0.999188 S.D. dependent var 0.365800
S.E. of regression 0.010423 Akaike info criterion –6.217159
Sum squared resid 0.005323 Schwarz criterion –6.068458
Log likelihood 168.7547 Hannan–Quinn criter. –6.159976
F-statistic 21333.54 Durbin–Watson stat 1.448914
Prob(F-statistic) 0.000000

Table 6.5 Transformed consumption function using �� �0.3246.



The R2 values in the two tables are about the same, but we cannot compare them di-

rectly for reasons already discussed.

Before proceeding further, it should be noted that the AR(1) transform is a specific

case of the more general transformation, AR(p) shown in Eq. (6.4). If, for example, the

error term follows AR(2),

u u u vt t t t� � �� �� �1 1 2 2 (6.13)

then

u u u vt t t t� � �� �� �1 1 2 2 (6.14)

where vt now follows the standard OLS assumptions. In this case we will have to trans-

form the regressand and regressors by subtracting from the current value of each vari-

able their previous two values, each multiplied by the autocorrelation coefficients �1

and �2 , respectively.

In practice, of course we replace the unobserved us by their counterparts, the es.

But there is no need to do this manually. In Eiews, for example, if you add the terms

AR(1) and AR(2) when running the OLS regression, you will get the results practically

instantly.

In deciding how many AR terms to add, we may have to use the Akaike or similar in-

formation criterion to decide the value of p. If your sample is not very large, you may

not want to add too many AR terms, for each added AR term will consume one degree

of freedom.

The Newey–West method of correcting OLS standard errors
All the methods of searching for autocorrelation coefficient(s) discussed thus far are

essentially trial and error methods. Which method will succeed in a concrete applica-

tion will depend on the nature of the problem and on the sample size.

But if the sample size is large (technically infinite), one can estimate an OLS regres-

sion in the usual manner but correct the standard errors of the estimated coefficients,

by a method developed by Newey and West. The standard errors corrected by their

procedure are also known as HAC (heteroscedasticity and autocorrelation consistent)

standard errors.14 Generally speaking, if there is autocorrelation, the HAC standard

errors are found to be larger than the usual OLS standard errors.

The HAC procedure is now incorporated in several software packages. We illus-

trate this procedure for our consumption function. Using Eviews, we obtained the re-

sults in Table 6.6.

If you compare the HAC standard errors with the OLS standard errors given in

Table 6.2, you will observe that they do not differ substantially. This would suggest

that despite the evidence of autocorrelation based on several autocorrelation tests, the

autocorrelation problem does not seem to be very serious. This may be due the fact

that the observed correlation found in the error term, of between 0.32 and 0.35, may

not be very high. Of course, this answer is specific to our data set and there is no guar-

antee that this will happen in every case.
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14 The mathematics behind this method is rather complicated. If you are familiar with matrix algebra,

you can consult William H. Greene, Econometric Analysis, 6th edn, Pearson/Prentice Hall, New Jersey, 2008,

Chapter 19.



Incidentally, observe that the estimated coefficient values in the two tables are the

same, as are the other summary statistics. In other words, the HAC procedure only

changes the standard errors, and hence the t statistics and their p values. This is similar

to White’s robust error terms which also do not affect the original regression coeffi-

cients and other summary statistics.

But keep in mind that the HAC procedure is valid in large samples only.15

6.4 Model evaluation

An important assumption of the CLRM is that the model used in the analysis is “cor-

rectly specified”. This is often a tall order, for searching for the correct model is like

searching for the Holy Grail. In practice we use prior empirical work that has been

published in the field as a guide, obtain the best available data, and use the best possible

method of estimation.

Even then, model building is an art. In the context of this chapter, autocorrelation

can arise for several reasons, such as inertia, specification error, Cobweb phenomenon,

data manipulation, and nonstationarity.16

To illustrate, we will consider the case of model specification error. Now consider a

re-specification of model (6.1):

ln ln ln lnC A A DPI A W A R A C ut t t t t t� � � � � ��1 2 3 4 5 1 (6.15)

This model differs from (6.1) in that we have added the log of consumption expendi-

ture lagged one period as an additional regressor and changed the coefficient notation

from B to A to see if there is any difference between them.

Model (6.15) is called an autoregressive model because one of the regressors is the

lagged value of the regressand. The reason for adding the lagged consumption
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Dependent Variable: LC
Method: Least Squares
Sample: 1947 2000
Included observations: 54
Newey–West HAC Standard Errors & Covariance (lag truncation=3)

Coefficient Std. Error t-Statistic Prob.

C –0.467714 0.043937 –10.64516 0.0000

LDPI 0.804871 0.017117 47.02132 0.0000

LW 0.201272 0.015447 13.02988 0.0000

R –0.002689 0.000880 –3.056306 0.0036

R-squared 0.999560 Mean dependent var 7.826093
Adjusted R-squared 0.999533 S.D. dependent var 0.552368
S.E. of regression 0.011934 Akaike info criterion –5.947707
Sum squared resid 0.007121 Schwarz criterion –5.800374
Log likelihood 164.5881 Durbin–Watson stat 1.289237
F-statistic 37832.71 Prob(F-statistic) 0.000000

Table 6.6 HAC standard errors of the consumption function.

15 For some of the limitations of the HAC procedure, see Jeffrey M. Wooldridge, Introductory

Econometrics, 4th edn, South-Western, Ohio, 2009, pp. 428–31.

16 For a brief discussion about this, see Gujarati/Porter, op cit., pp. 414–18.



expenditure value is to see if past consumption expenditure influences current con-

sumption expenditure. If so, that will show the inertia factor mentioned previously.

It is clear from this table that lagged consumption affects current consumption ex-

penditure, ceteris paribus. This may be due to inertia. The coefficients in Tables 6.2

and 6.7 look different at face value, but they really are not, for if you divide both sides

by (1 – 0.2765) = 0.7235 you will obtain coefficient values that are about the same as in

Table 6.2.17

Do we have autocorrelation in the revised model? Here we cannot use the

Durbin–Watson d test because, as noted earlier, this test is not applicable if the model

contains lagged value(s) of the dependent variable, which is the case here.

Assuming first-order autocorrelation, Durbin has developed an alternative test for

such models, called Durbin’s h statistic.18

Under the null hypothesis that � � 0, in large samples, the h statistic follows the

standard normal distribution, that is, h N~ ( , )01. Now from the properties of the

normal distribution we know that the probability that| | .h �196 is about 5%, where| |h

means the absolute value of h. For our example, the h value is about 5.43, which ex-

ceeds the 5% critical h value, leading to the conclusion that model (6.15) also suffers

from first-order autocorrelation.

Instead of using this test, we will use the BG test, for it allows for lagged value(s) of

regressand as regressors. Using the BG test, and using two lagged values of the residu-

als, there still was evidence of autocorrelation; the estimated p values of 0.09 (F test)

and 0.07 (chi-square test) (Table 6.8).

Whether we use model (6.1) or (6.15), it seems we have serial correlation in our

data.
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Dependent Variable: LC
Method: Least Squares
Sample (adjusted): 1948 2000
Included observations: 53 after adjustments

Coefficient Std. Error t-Statistic Prob.

C –0.316023 0.055667 –5.677048 0.0000

LINC 0.574832 0.069673 8.250418 0.0000

LW 0.150289 0.020838 7.212381 0.0000

R –0.000675 0.000894 –0.755458 0.4537

LC(–1) 0.276562 0.080472 3.436754 0.0012

R-squared 0.999645 Mean dependent var 7.843870
Adjusted R-squared 0.999616 S.D. dependent var 0.541833
S.E. of regression 0.010619 Akaike info criterion –6.162741
Sum squared resid 0.005413 Schwarz criterion –5.976865
Log likelihood 168.3126 Durbin–Watson stat 1.395173
F-statistic 33833.55 Prob(F-statistic) 0.000000

Table 6.7 Autoregressive consumption function.

17 In the long-run when consumption expenditure stabilizes, LCt =LCt–1. Therefore, if you transfer

0.2765 LCt to the left-hand side, you will get about 0.7235 LCt. Then dividing through by 0.7235 you will get

results comparable to Table 6.2.

18 For a discussion of this test, see Gujarati/Porter, op cit., p. 465.



A technical note: Since we have a lagged dependent variable as one of the

regressors and serial correlation, the estimated coefficients in Eq. (6.15) may be biased

as well as inconsistent. One solution to this problem is to use an instrumental variable

(IV), or instrument, for the lagged regressand in such a way that the chosen IV is cor-

related (possibly highly) with the regressand but uncorrelated with the error term.

This topic is rather involved and we have devoted an entire chapter to IV estimation

(see Chapter 19). One suggested solutions is to use the lagged value of income as in-

strument for the lagged value of consumption expenditure. But we will have more to

say about this in Chapter 19.

To get rid of autocorrelation in the error term we can use one or more of the reme-

dial methods discussed above, or we can use the Newey–West method and obtain

robust or HAC standard errors. This gives the results shown in Table 6.9.

Comparing the results in Tables 6.6 and 6.9, it is evident that the standard errors of

the coefficients in Table 6.6 were underestimated. Again keep in mind that the HAC

correction procedure is valid in large samples only.

Model (6.15) is not the only way in which the original model can be re-specified. In-

stead of including the lagged value of the regressand among the explanatory variables,

we could introduce the lagged value(s) of the explanatory variable, LDPI. Or we could

include both.19
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Breusch–Godfrey Serial Correlation LM Test:
F-statistic 2.544893 Prob. F(2,46) 0.0895
Obs*R-squared 5.280090 Prob. Chi-Square(2) 0.0714

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Sample: 1948 2000
Included observations: 53
Presample missing value lagged residuals set to zero.

Coefficient Std. Error t-Statistic Prob.

C –0.024493 0.055055 –0.444876 0.6585

LINC 0.036462 0.070518 0.517061 0.6076

LW 0.009814 0.020666 0.474868 0.6371

R –8.02E–06 0.000879 –0.009121 0.9928

LC(–1) –0.045942 0.081647 –0.562685 0.5764

RESID(–1) 0.354304 0.159237 2.225013 0.0310

RESID(–2) –0.136263 0.155198 –0.877992 0.3845

R-squared 0.099624 Mean dependent var 2.05E–16
Adjusted R-squared –0.017816 S.D. dependent var 0.010202
S.E. of regression 0.010293 Akaike info criterion –6.192213
Sum squared resid 0.004873 Schwarz criterion –5.931986
Log likelihood 171.0936 Durbin–Watson stat 1.924355
F-statistic 0.848298 Prob(F-statistic) 0.539649

Table 6.8 BG test of autocorrelation for autoregressive consumption function.

19 For details, see Gujarati/Porter, op cit., Chapter 17.



6.5 Summary and conclusions

In this chapter we covered in some depth the topic of autocorrelation. Time series data

are often plagued by autocorrelation. First we discussed the nature and consequences

of autocorrelation, then we discussed the methods of detecting autocorrelation, and

then we considered ways in which the problem of autocorrelation can be resolved.

Since we generally do not know the true error terms in a regression model, in prac-

tice we have to infer the nature of autocorrelation in a concrete application by examin-

ing the residuals, which are good proxies for the true error term if the sample size is

reasonably large. We can plot the residuals, or use the Durbin–Watson or

Breusch–Godfrey (BG) tests.

If the tests of autocorrelation suggest that autocorrelation exists in a given case, we

can transform the original model so that in the transformed model we do not face

autocorrelation. This is easier said than done, for we do not know the true structure of

autocorrelation in the population from which the sample was drawn. We therefore try

several transformations, such as the first-difference and generalized difference trans-

formations. Very often this is a trial and error process.

If the sample size is reasonably large, we can use the robust standard errors or HAC

standard errors, which do not require any special knowledge of the nature of

autocorrelation. The HAC procedure simply modifies the OLS standard errors, with-

out changing the values of the regression coefficients.

Since the OLS estimators are consistent despite autocorrelation, the thrust of the

corrective methods discussed in this chapter is to estimate the standard errors of the

regression coefficients as efficiently as possible so that we do not draw misleading con-

clusions about the statistical significance of one or more regression coefficients.
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Dependent Variable: LC
Method: Least Squares
Sample (adjusted): 1948 2000
Included observations: 53 after adjustments
Newey–West HAC Standard Errors & Covariance (lag truncation=3)

Coefficient Std. Error t-Statistic Prob.

C –0.316023 0.069837 –4.525140 0.0000

LINC 0.574832 0.090557 6.347768 0.0000

LW 0.150289 0.021847 6.879011 0.0000

R –0.000675 0.001157 –0.583479 0.5623

LC(–1) 0.276562 0.100655 2.747633 0.0084

R-squared 0.999645 Mean dependent var 7.843870
Adjusted R-squared 0.999616 S.D. dependent var 0.541833
S.E. of regression 0.010619 Akaike info criterion –6.162741
Sum squared resid 0.005413 Schwarz criterion –5.976865
Log likelihood 168.3126 Durbin–Watson stat 1.395173
F-statistic 33833.55 Prob(F-statistic) 0.000000

Table 6.9 HAC standard errors of the autoregressive consumption function.



Exercises

6.1 Instead of estimating model (6.1), suppose you estimate the following linear

model:

C A A DPI A W A R ut t t t t� � � � �1 2 3 4 (6.16)

(a) Compare the results of this linear model with those shown in Table 6.2.

(b) What is the interpretation of the various coefficients in this model?

What is the relationship between the A coefficients in this model and the B

coefficients given in Table 6.2?

(c) Does this regression suffer from the autocorrelation problem? Discuss the

tests you would conduct. And what is the outcome?

(d) If you find autocorrelation in the linear model, how would resolve it? Show

the necessary calculations.

(e) For this model how would you compute the elasticities of C with respect to

DPI, W, and R? Are these elasticities different from those obtained from re-

gression (6.1)? If so, what accounts for the difference?

6.2 Reestimate regression (6.1) by adding time, t, as an additional regressor, t taking

values of 1, 2, ..., 54. t is known as the trend variable.

(a) Compare the results of this regression with those given in Table 6.2. Is there

a difference between the two sets of results?

(b) If the coefficient of the trend variable is statistically significant, what does it

connote?

(c) Is there serial correlation in the model with the trend variable in it? Show the

necessary calculations.

6.3 Repeat Exercise 6.2 for the model given in Eq. (6.15) and comment on the results.

6.4 Re-run the regression in Table 6.7 using ln INC(–1) as a regressor in place of LC(–1),

and compare the results with those in Table 6.7. What difference, if any, do you see? What

may be logic behind this substitution? Explain.
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7
Regression diagnostic IV: model

specification errors

One of the assumptions of the classical linear regression model (CLRM) is that the

model used in analysis is “correctly specified”. This is indeed a tall order, for there is no

such thing as a perfect model. An econometric model tries to capture the main fea-

tures of an economic phenomenon, taking into account the underlying economic

theory, prior empirical work, intuition, and research skills. If we want to take into ac-

count every single factor that affects a particular object of research, the model will be

so unwieldy as to be of little practical use.

By correct specification we mean one or more of the following:

1 The model does not exclude any “core” variables.

2 The model does not include superfluous variables.

3 The functional form of the model is suitably chosen.

4 There are no errors of measurement in the regressand and regressors.

5 Outliers in the data, if any, are taken into account.

6 The probability distribution of the error term is well specified.

7 What happens if the regressors are stochastic?

8 The Simultaneous Equation Problem: the simultaneity bias.

In what follows we will discuss the consequences of what happens if one or more of

the specification errors are committed, how we can detect them, and what remedial

measures we can take.

7.1 Omission of relevant variables

We do not deliberately set out to omit relevant variables from a model. But sometimes

they are omitted because we do not have the data, or because we have not studied the

underlying economic theory carefully, or because we have not studied prior research

in the area thoroughly, or sometimes just because of carelessness. This is called

underfitting a model. Whatever the reason, omission of important or “core” variables

has the following consequences.1
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1 If the left-out, or omitted, variables are correlated with the variables included in

the model, the coefficients of the estimated model are biased. Not only that, the bias

does not disappear as the sample size gets larger. In other words, the estimated co-

efficients of the misspecified model are biased as well as inconsistent.

2 Even if the incorrectly excluded variables are not correlated with the variables in-

cluded in the model, the intercept of the estimated model is biased.

3 The disturbance variance 
2 is incorrectly estimated.

4 The variances of the estimated coefficients of the misspecified model are biased.

As a result, the estimated standard errors are also biased.

5 In consequence, the usual confidence intervals and hypothesis-testing procedures

become suspect, leading to misleading conclusions about the statistical signifi-

cance of the estimated parameters.

6 Furthermore, forecasts based on the incorrect model and the forecast confidence

intervals based on it will be unreliable.

As you can see, the consequences of omitting relevant variables can be very serious.

Naturally, we would like to avoid such consequences. Now the trouble is that it is

easy to document the consequences of misspecification if we are told what the true

model is. For in that case we can estimate the “correctly” specified model and compare

the results with the results of the misspecified model. But this brings us back to the

question of what is the “correctly specified” model? Searching for a “correctly speci-

fied” model is like searching for the Holy Grail.

Where do we begin then? Besides being meticulous in specifying the model, the best

we can do is to compare the chosen model with an alternative model that may be a can-

didate for consideration, perhaps a model suggested by peer reviewers.

An illustrative example: wage determination revisited

In Chapter 1 we considered a model of hourly wage determination, using the CPS

(Current Population Survey) 1995 data on 1,289 workers. The results of that model are

given in Table 1.2, which for convenience we reproduce here in Table 7.1.

This table considered only gender, race, union status, education, and experience as

the determinants of hourly wage. But it is a common experience that wages increase as

work experience increases, holding other variables constant. But do wages increase at

a slower or faster rate as work experience increases? To allow for this possibility, let us

expand the wage model in Table 7.1 by adding to it the squared-experience as an addi-

tional regressor. The results are given in the Table 7.2

Comparing these results with those in Table 7.1, we see that the variable experi-

ence-squared is highly statistically significant (p value practically zero). Interestingly,

the coefficient of the experience-squared variable is negative, but that of experience is

positive. What this suggests is that although hourly wages increase with more work ex-

perience, the rate of increase declines with more work experience.2

For the present purposes, it seems that by omitting the experience-squared variable

from the model in Table 7.1 we have committed the bias of omitting a relevant
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2 Holding the other variables constant, if you take the derivative of wage with respect to experience, you

will obtain, after rounding, d dWage Exper Exper/ . .� �0 4245 0 0124 , which shows that the rate of change of

wage with respect to experience declines at the rate of 0.0124 per additional year of work experience.



variable(s) from the model. Although in Table 7.2 all the coefficients are individually

and collectively statistically significant, their values are in several cases substantially

different from those given in Table 7.1. This substantiates the points made earlier that

in situations like these the OLS estimates given in Table 7.1 are biased.

But this model can be further modified if you interact (i.e. multiply) experience with

gender. This refined model gives the results of Table 7.3.
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Dependent Variable: WAGERATE
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –7.183338 1.015788 –7.071691 0.0000

FEMALE –3.074875 0.364616 –8.433184 0.0000

NONWHITE –1.565313 0.509188 –3.074139 0.0022

UNION 1.095976 0.506078 2.165626 0.0305

EDUCATION 1.370301 0.065904 20.79231 0.0000

EXPERIENCE 0.166607 0.016048 10.38205 0.0000

R-squared 0.323339 Mean dependent var 12.36585
Adjusted R-squared 0.320702 S.D. dependent var 7.896350
S.E. of regression 6.508137 Akaike info criterion 6.588627
Sum squared resid 54342.54 Schwarz criterion 6.612653
Log likelihood –4240.370 Hannan–Quinn criter. 6.597646
F-statistic 122.6149 Durbin–Watson stat 1.897513
Prob(F-statistic) 0.000000

Table 7.1 Determinants of hourly wage rate.

Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –8.419035 1.035710 –8.128758 0.0000

FEMALE –3.009360 0.361432 –8.326210 0.0000

NONWHITE –1.536077 0.504448 –3.045066 0.0024

UNION 1.026979 0.501521 2.047728 0.0408

EDUCATION 1.323745 0.065937 20.07597 0.0000

EXPERIENCE 0.424463 0.053580 7.922076 0.0000

EXPERSQ –0.006183 0.001227 –5.039494 0.0000

R-squared 0.336483 Mean dependent var 12.36585
Adjusted R-squared 0.333378 S.D. dependent var 7.896350
S.E. of regression 6.447128 Akaike info criterion 6.570562
Sum squared resid 53286.93 Schwarz criterion 6.598593
Log likelihood –4227.728 Durbin–Watson stat 1.901169
F-statistic 108.3548 Prob(F-statistic) 0.000000

Table 7.2 Expanded wage function.



This table shows that the interaction coefficient between gender and experience is

statistically very significant. The negative value of this coefficient suggests that females

earn less than their male counterparts with similar work experience. Whether this is

due to gender discrimination is hard to tell, although it might be the case.

It seems that it is worth expanding the original model given in Table 7.1 by adding

the experience-squared and the gender-experience variables to the model. We can es-

tablish this formally by using the F test. For this purpose call the model in Table 7.1 the

restricted model and the one in Table 7.3 the unrestricted model. Let Rr
2 and Rur

2 repre-

sent the restricted and unrestricted R2 values.

Now consider the following expression:

F
R R m

R n k

ur r

ur

�
�

� �

( )/

( )/( )

2 2

21
(7.1)3

where m = number of restrictions (2 in our example, for the restricted model excludes

two variables), n = number of observations, and k = number of regressors in the unre-

stricted model (m n k n k� � � � � �[( ) ( ) ]2 2).

The F statistic in Eq. (7.1) follows the F distribution with m and (n – k) degrees of

freedom in the numerator and denominator, respectively.

Putting the appropriate values from Table 7.1 and Table 7.3, we obtain the follow-

ing result:
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Dependent Variable: W
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –9.200668 1.072115 –8.581792 0.0000

FEMALE –1.433980 0.680797 –2.106326 0.0354

NONWHITE –1.481891 0.503577 –2.942730 0.0033

UNION 0.949027 0.501081 1.893958 0.0585

EDUC 1.318365 0.065801 20.03554 0.0000

EXPER 0.471974 0.056212 8.396344 0.0000

EXPERSQ –0.006274 0.001224 –5.124559 0.0000

EXPER*FEMALE –0.084151 0.030848 –2.727939 0.0065

R-squared 0.340315 Mean dependent var 12.36585
Adjusted R-squared 0.336711 S.D. dependent var 7.896350
S.E. of regression 6.430992 Akaike info criterion 6.566322
Sum squared resid 52979.16 Schwarz criterion 6.598357
Log likelihood –4223.994 Durbin–Watson stat 1.892702
F-statistic 94.40528 Prob(F-statistic) 0.000000

Table 7.3 Refinement of the wage model.

3 Note that the formula given in Eq. (7.1) is valid only if the dependent variable in both models is the

same. In this case, the F test in Eq. (7.1) is equivalent to the F test in Eq. (2.11). If that is not the case, use the F

test in Eq. (2.11). See also Eq. (1.18).
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For 2 df in the numerator and 1,281 df in the denominator, this F value is highly sig-

nificant, suggesting that it is worth adding the two variables to the original model. In

this sense, the original model is misspecified because it omits two relevant variables.

Again notice that as we go from Table 7.1 to 7.2 to 7.3, the coefficients of some vari-

ables change substantially. This reinforces the point made earlier that if we omit rele-

vant variables from a model the coefficients in the (incorrectly specified) model are

biased and there is no guarantee that this bias will disappear as the sample size in-

creases. In our example, we have a reasonably large sample.

Observe that the R2 value of 0.3403 in the expanded model may not seem much

larger than the R2 value of 0.3233 in the original model, but the incremental contribu-

tion of the two added variables is statistically quite significant, as the F test shows.

7.2 Tests of omitted variables

Although we have illustrated the consequences of omitting relevant variables, how do

we find out if we have committed the omission variable bias? There are several tests of

detecting the omission of relevant variables, but we will consider only two here,

namely, Ramsey’s RESET test and the Lagrange multiplier (LM) test.4

Ramsey’s RESET test
Ramsey’s regression specification error test, RESET for short, is a general test of model

specification errors. To explain this test, once again let us revert to the wage determi-

nation model. We saw that in relation to Tables 7.2 and 7.3, the model in Table 7.1 was

misspecified. Without worrying about the results in the other tables for now, let us

concentrate on the results in Table 7.1.

We first explain the steps involved in the RESET and then consider the rationale

behind it.

1 From the (incorrectly) estimated wage model given in Table7.1, we first obtain the

estimated, or fitted, values of the hourly wage rate; call itWagei
^

.

2 Reestimate the model in Table 7.1 including Wagei
2^

,Wagei
3^

(and possibly higher

powers of the estimated wage rate) as additional regressors.

3 The initial model in Table 7.1 is the restricted model and the model in Step 2 is the

unrestricted model.

4 Under the null hypothesis that the restricted (i.e. the original model) is correct, we

can use the F test given in Eq. (7.1). This F statistic has m = 2 df in the numerator

and (n – k) = (1289 – 8) = 1281 df in the denominator, for in the regression in Step

2 we are estimating eight parameters, including the intercept.

5 If the F test in Step 4 is statistically significant, we can reject the null hypothesis.

That is, the restricted model is not appropriate in the present situation. By the

same token, if the F statistic is statistically insignificant, we do not reject the origi-

nal model.
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The idea behind this test is simple. If the original model is correctly specified, the

added squared and higher powers of the estimated wage values should not add any-

thing to the model. But if one or more coefficients of the added regressors are signifi-

cant, this may be evidence of specification error.

Using Eviews 6, we obtained the results in Table 7.4. The important finding of this

table is that the estimated F value of 20.12 is highly statistically significant; its p value is

practically zero. As you can also see, the coefficient of the squared fitted values of the

wage rate is statistically highly significant.5

Although simple to apply, the RESET test has two drawbacks. First, if the test shows

that the chosen model is incorrectly specified, it does not suggest any specific alterna-

tive. Second, the test does not offer any guidance about the number of powered terms

of the estimated values of the regressand to be included in the unrestricted model.

There is no definite answer to this, although in practice we could proceed by trial and

error and select the powered terms on the basis of information criteria, such as Akaike

or Schwarz.

The Lagrange multiplier (LM) test
We illustrate this test with our wage rate example.
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Ramsey RESET Test:
F-statistic 20.12362 Prob. F(2,1281) 0.0000
Log likelihood ratio 39.87540 Prob. Chi-Square(2) 0.0000

Test Equation:
Dependent Variable: WAGE
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C 4.412981 2.453617 1.798561 0.0723

FEMALE –0.059017 0.797535 –0.073999 0.9410

NONWHITE –0.195466 0.631646 –0.309454 0.7570

UNION 0.124108 0.564161 0.219987 0.8259

EDUCATION 0.080124 0.302395 0.264966 0.7911

EXPER 0.000969 0.042470 0.022809 0.9818

FITTED^2 0.044738 0.020767 2.154294 0.0314

FITTED^3 –0.000311 0.000601 –0.517110 0.6052

R-squared 0.343951 Mean dependent var 12.36585
Adjusted R-squared 0.340366 S.D. dependent var 7.896350
S.E. of regression 6.413247 Akaike info criterion 6.560795
Sum squared resid 52687.19 Schwarz criterion 6.592830
Log likelihood –4220.433 Durbin–Watson stat 1.894263
F-statistic 95.94255 Prob(F-statistic) 0.000000

Table 7.4 RESET test of the wage model.

5 The important F statistic here is the F value given in the Ramsey RESET test in the top part of this table.



1 From the original model given in Table 7.1, we obtain the estimated residuals, ei.

2 If in fact the model in Table 7.1 is the correct model, then the residuals ei obtained

from this model should not be related to the regressors omitted from that

model, namely, Exper2 and the interaction between gender and experience,

Exper Female� .

3 We now regress ei on the regressors in the original model and the omitted vari-

ables from the original model. Call this the auxiliary regression, auxiliary to the

original regression.

4 If the sample size is large, it can be shown that n (the sample size) times the R2 ob-

tained from the auxiliary regression follows the chi-square distribution with df

equal to the number of regressors omitted from the original regression; two in the

present case. Symbolically,

nR
m

2 2~ ( )
( )

� asymptotically (7.3)

where m is the number of omitted regressors from the original model.

5 If the computed �2 value exceeds the critical chi-square value at the chosen level

of significance, or if its p value is sufficiently low, we reject the original (or re-

stricted) regression. This is to say, that the original model was misspecified. See

Table 7.5.

Therefore, we have

nR2 = (1289)(0.0251)�32.35 ~ �2
2 (7.4)
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Dependent Variable: S1
Method: Least Squares
Date: 11/25/09 Time: 12:36
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –2.017330 1.072115 –1.881636 0.0601

FE 1.640895 0.680797 2.410258 0.0161

NW 0.083422 0.503577 0.165659 0.8685

UN –0.146949 0.501081 –0.293264 0.7694

ED –0.051936 0.065801 –0.789287 0.4301

EX 0.305367 0.056212 5.432437 0.0000

EX^2 –0.006274 0.001224 –5.124559 0.0000

EX*FE –0.084151 0.030848 –2.727939 0.0065

R-squared 0.025089 Mean dependent var 5.44E–09
Adjusted R-squared 0.019761 S.D. dependent var 6.495492
S.E. of regression 6.430992 Akaike info criterion 6.566322
Sum squared resid 52979.16 Schwarz criterion 6.598357
Log likelihood –4223.994 Durbin–Watson stat 1.892702
F-statistic 4.709394 Prob(F statistic) .0.000031

Note: S1 (= ei), residuals from the model in Table 7.1.

Table 7.5 The LM test of the wage model.



For 2 df the probability of obtaining a chi-square value of 32.35 or greater is ex-

tremely small, practically zero.

On the basis of the LM test, we can conclude that the original model in Table 7.1

was misspecified, thus reinforcing the conclusion based on the Ramsey’s RESET test.

Keep in mind that our sample of 1,289 observations is quite large so that the LM test in

this case is valid.

7.3 Inclusion of irrelevant or unnecessary variables

Sometimes researchers add variables in the hope that the R2 value of their model will

increase in the mistaken belief that the higher the R2 the better the model. This is

called overfitting a model. But if the variables are not economically meaningful and

relevant, such a strategy is not recommended because of the following consequences:6

1 The OLS estimators of the “incorrect” or overfitted model are all unbiased and

consistent.

2 The error variance 
2 is correctly estimated.

3 The usual confidence interval and hypothesis testing procedures remain valid.

4 However, the estimated coefficients of such a model are generally inefficient –

that is, their variances will be larger than those of the true model.

Notice the asymmetry in the two types of specification error – underfitting and

overfitting a model. In the former case the estimated coefficients are biased as well as

inconsistent, the error variance is incorrectly estimated, and the hypothesis-testing

procedure becomes invalid. In the latter case, the estimated coefficients are unbiased

as well as consistent, the error variance is correctly estimated, and the hypothesis-test-

ing procedure remains valid; the only penalty we pay for the inclusion of irrelevant or

superfluous variables is that the estimated variances, and hence the standard errors,

are relatively large and therefore probability inferences about the parameters are less

precise.

One may be tempted to conclude that it is better to include unnecessary variables

(the so-called “kitchen sink approach”) than omit relevant variables. Such a philoso-

phy is not recommended because the inclusion of unnecessary variables not only leads

to loss of efficiency of the estimators but may also lead, unwittingly, to the problem of

multicollinearity, not to mention the loss of degrees of freedom.

An illustrative example

To give a glimpse of this, let us continue with our wage determination example by

adding to the model in Table 7.1 the variable “age of the worker”. We could not run

this regression because of near perfect collinearity between age and work experience.

This is because the variable “work experience” was defined as (age – years of schooling

– 6).7 This can be verified by regressing work experience on age, which gives the

results shown in Table 7.6.

As you can see, the two variables are highly correlated, the correlation coefficient

between them being 0.9705 (� 0 942016. ).
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6 For details, see Gujarati/Porter, op cit., pp. 477–82.

7 Presumably, education starts at age 6.



This exercise suggests that we can include age or work experience as a regressor but

not both.

7.4 Misspecification of the functional form of a regression
model

In Chapter 2, on the functional form of regression models, we discussed the choice be-

tween linear and log-linear (Cobb–Douglas) production functions. In both cases we

had data on output (as measured by GDP), labor input (as measured by hours of work),

and capital (capital expenditure) for the 50 states in the USA and Washington, DC, for

1995. There we discussed the general procedure for comparing such models. Here we

will discuss it with reference to the wage determination model.

In labor economics researchers often choose the log of wages as the regressand.

This is because the distribution of wages across the population tends to be skewed,

with many workers at the low end of the distribution and a few at the high end of the

distribution. On the other hand, the distribution of log of wages tends to be more sym-

metrical and it also has homoscedastic variance (see Figures 3.1 and 3.2).

For our wage example, which is a better model: linear or log-linear? We have al-

ready given the results of the linear model in Table 7.3. Table 7.7 presents the results of

the log model.

All the regressors are individually highly significant, as their t statistics have very

low p values. Collectively also all the variables are highly significant, as the F value of

about 109 has a p value that is practically zero.

Of course, the interpretation of the coefficients in Table 7.7 is different from that in

Table 7.3 because the dependent variables in the two models are different. For exam-

ple, the coefficient of 0.0948 suggests that if schooling increases by a year, the average

hourly wage goes up by about 9.48%, ceteris paribus. (Recall the interpretation of the

semi-log model discussed in Chapter 2.) It is left for the reader to interpret the other

coefficients in this table.

Which is a better mode: the linear model in Table 7.3 or the log-linear model in

Table 7.7?
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Dependent Variable: EXPER
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C –18.56877 0.269951 –68.78564 0.0000

AGE 0.984808 0.006811 144.5984 0.0000

R-squared 0.942016 Mean dependent var 18.78976
Adjusted R-squared 0.941971 S.D. dependent var 11.66284
S.E. of regression 2.809491 Akaike info criterion 4.905434
Sum squared resid 10158.60 Schwarz criterion 4.913443
Log likelihood –3159.552 Hannan–Quinn criter. 4.908440
F-statistic 20908.71 Prob(F-statistic) 0.000000

Table 7.6 Regression of experience on age.



For the linear model R2 is about 0.34 and for the log-linear model, it is 0.37. But we

cannot compare these two R2s because the dependent variables in the two models are

different. How then do we compare the two models?

We follow the steps outlined in Chapter 2 (for brevity of writing, we let W stand for

the wage rate).

1 We compute the geometric mean of wages, which is about 10.406.8

2 We construct a new variableW Wi i
* / .� 10 406, that is, we divide wages by the geo-

metric mean of wages.

3 We estimate the model in Table 7.3, usingWi
* instead ofWi as the regressand and

obtain the RSS from this regression, call it RSS1.

4 We reestimate the model in Table 7.3, using ln *Wi , instead of lnWi as the

regressand and obtain the RSS (residual sum of squares) from this regression, call

it RSS2.

5 We then compute:

n RSS

RSS2

1

2
1
2ln ~

�

 
!!

"

#
$$ � (7.5)

Note: Put the larger RSS in the numerator.

That is, the expression on the left-hand side of Eq. (7.5) follows the chi-square dis-

tribution with 1 df. If the chi-square value computed from Eq. (7.5) is statistically sig-

nificant, we can conclude that the model with the lower RSS is the better model.
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Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 1289
Included observations: 1289

Coefficient Std. Error t-Statistic Prob.

C 0.732446 0.077613 9.437130 0.0000

FEMALE –0.148060 0.049285 –3.004179 0.0027

NONWHITE –0.127302 0.036455 –3.492000 0.0005

UNION 0.168485 0.036275 4.644705 0.0000

EDUCATION 0.094792 0.004764 19.89963 0.0000

EXPER 0.041946 0.004069 10.30778 0.0000

EXPER^2 –0.000637 8.86E–05 –7.187309 0.0000

EXPER*FEMALE –0.005043 0.002233 –2.258065 0.0241

R-squared 0.373017 Mean dependent var 2.342416
Adjusted R-squared 0.369591 S.D. dependent var 0.586356
S.E. of regression 0.465556 Akaike info criterion 1.315020
Sum squared resid 277.6474 Schwarz criterion 1.347055
Log likelihood –839.5302 Durbin–Watson stat 1.926178
F-statistic 108.8741 Prob(F-statistic) 0.000000

Table 7.7 Determinants of log of wages.

8 The GM = (W1 � W2 � ... � W1289)1/1,289 = e 2 342416 10 406. .� in the present example.



To save space, we will not produce all the results except to note that in the present

case: RSS1 = 489.2574 and RSS2 = 277.6474. As a result:

1289

2

4892574

277 6474
36511ln

.

.
.�

 
!

"
#
$ � (7.6)

This chi-square value for 1 df is so large that we can confidently conclude that it is

the log-linear model given in Table 7.7 that is superior to the linear model given in

Table 7.3.

The conclusion then is that the functional form of the wage model given in Table

7.3 is misspecified.

7.5 Errors of measurement

One of the assumptions of CLRM is that the model used in the analysis is correctly

specified. Although not explicitly spelled out, this presumes that the values of the

regressand as well as regressors are accurate. That is, they are not guess estimates, ex-

trapolated, interpolated or rounded off in any systematic manner or recorded with

errors.

This ideal, however, is not very often met in practice for several reasons, such as

non-response errors, reporting errors, missing data, or sheer human errors. Whatever

the reasons for such errors, measurement errors constitute yet another specification

bias, which has serious consequences, especially if there are such errors in the

regressors.

Errors of measurement in the regressand

Although we will not prove it here, if there are errors of measurement in the depend-

ent variable, the following consequences ensue.9

1 The OLS estimators are still unbiased.

2 The variances and standard errors of OLS estimators are still unbiased.

3 But the estimated variances, and ipso facto the standard errors, are larger than in

the absence of such errors.

In short, errors of measurement in the regressand do not pose a very serious threat

to OLS estimation.

Errors of measurement in the regressors

The situation here is more serious, for errors of measurement in the explanatory vari-

able(s) render OLS estimators biased as well as inconsistent.10 Even such errors in a

single regressor can lead to biased and inconsistent estimates of the coefficients of the

other regressors in the model. And it is not easy to establish the size and direction of

bias in the estimated coefficients.

It is often suggested that we use instrumental or proxy variables for variables sus-

pected of having measurement errors. The proxy variables must satisfy two
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9 For details, see Gujarati/Porter, 5th edn, pp. 482–3.

10 For details, see Gujarati/Porter, op cit., 483–6.



requirements – that they are highly correlated with the variables for which they are a

proxy and also they are uncorrelated with the usual equation error ui as well as the

measurement error. But such proxies are not easy to find; we are often in the situation

of complaining about the bad weather without being able to do much about it. There-

fore this remedy may not be always available. Nonetheless, because of the wide use of

instrumental variables in many areas of applied econometrics, we discuss this topic at

length in Chapter 19.11

All we can say about measurement errors, in both the regressand and regressors, is

that we should be very careful in collecting the data and making sure that some obvi-

ous errors are eliminated.

7.6 Outliers, leverage and influence data

In Chapter 1 we discussed the basics of the linear regression model. You may recall

that in minimizing the residual sum of squares (RSS) to estimate the regression param-

eters, OLS gives equal weight to every observation in the sample. But this may create

problems if we have observations that may not be “typical” of the rest of the sample.

Such observations, or data points, are known as outliers, leverage or influence points.

It is important that we know what they are, how they affect the regression results, and

how we detect them.

� Outliers: In the context of regression analysis, an outlier is an observation with a

large residual (ei), large in comparison with the residuals of the rest of the observa-

tions. In a bivariate regression, it is easy to detect such large residual(s) because of

its rather large vertical distance from the estimated regression line. Remember that

there may be more than one outlier. One can also consider the squared values of ei,

as it avoids the sign problem – residuals can be positive or negative.

� Leverage: An observation is said to exert (high) leverage if it is disproportionately

distant from the bulk of the sample observations. In this case such observation(s)

can pull the regression line towards itself, which may distort the slope of the

regression line.

� Influence point: If a levered observation in fact pulls the regression line toward

itself, it is called an influence point. The removal of such a data point from the

sample can dramatically change the slope of the estimated regression line.

To illustrate some of these points, consider the data given in Table 7.8, which can

be found on the companion website.

This table gives data on the number of cigarettes smoked per capita (in 100s), and

deaths from the cancers of bladder, lung, kidney and leukemia (per 100,000 popula-

tion) for 43 states and Washington, DC, for the year 1960.

To illustrate the outlier problem, we regress deaths from lung cancer on the

number of cigarettes smoked. The results are given in Table 7.9.

Without implying causality, it seems that there is a positive relationship between

deaths from lung cancer and the number of cigarettes smoked. If we increase the
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11 For an interesting, but somewhat advanced, discussion of this topic see Joshua D. Angrist and

Jörn-Steffen Pischke, Mostly Harmless Econometrics: An Empiricist’s Companion, Princeton University

Press, Princeton, NJ, 2009, Chapter 4.



number of cigarettes smoked by 1 unit, the average number of deaths from lung cancer

goes up by 0.54 units.

Detection of outliers

A simple method of detecting outliers is to plot the residuals and squared residuals

from the estimated regression model. An inspection of the graph will give a rough and

ready method of spotting outliers, although that may not always be the case without

further analysis.

For the lung cancer regression, we obtain Figure 7.1. This figure shows that there

are spikes in the residuals and squared residuals at several observations, such as #15,

#17, #20, #25 and #32, the more pronounced being for observation #15 (Louisiana).
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Dependent Variable: LUNGCANCER
Method: Least Squares
Sample: 1 43
Included observations: 43

Coefficient Std. Error t-Statistic Prob.

C 6.274073 2.085699 3.008140 0.0045

CIG 0.542076 0.081939 6.615623 0.0000

R-squared 0.516318 Mean dependent var 19.74000
Adjusted R-squared 0.504521 S.D. dependent var 4.238291
S.E. of regression 2.983345 Akaike info criterion 5.069362
Sum squared resid 364.9142 Schwarz criterion 5.151279
Log likelihood –106.9913 Durbin–Watson stat 2.662271
F-statistic 43.76646 Prob(F-statistic) 0.000000

Table 7.9 Deaths from lung cancer and number of cigarettes smoked.
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Figure 7.1 Residuals and squared residuals of regression in Table 7.9.
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Consider the observation for Louisiana. In the sample data it has one of the highest

lung cancer deaths per 100, 000 population. Is it an outlying observation? Even if it is, it

does not necessarily mean that it is a high leverage or influence point. For a (data)

point to be influential, its removal from the sample must substantially change the re-

gression results (the slope coefficient, its standard error, etc.). One way of finding this

out is to see how the regression results change if we drop the Louisiana observation.

The results are given in Table 7.10.

If you compare the regression coefficients in Tables 7.9 and 7.10, statistically they

are not very different. Thus despite the appearance, Louisiana may not be an outlier.

There are several other methods of detecting leverage and influence points, but

these are somewhat involved and require the use of matrix algebra.12 However, Stata

has a routine that computes a leverage measure for every single observation in the

sample.

There are other methods of detecting outliers, such as recursive least squares and

recursive residuals, but the discussion of these methods will take us far afield, so we

will not pursue them here.13

Our objective in discussing the topic of outliers is to warn the researcher to be on

the lookout for them, because OLS estimates can be greatly affected by such outliers,

especially if they are influential.
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Dependent Variable: LUNGCANCER
Method: Least Squares
Date: 11/07/11 Time: 20:35
Sample: 1 42
Included observations: 42

Variable Coefficient Std. Error t-Statistic Prob.

C 5.622778 1.951918 2.880643 0.0063

CIG 0.561068 0.076428 7.341163 0.0000

R-squared 0.573982 Mean dependent var 19.60405
Adjusted R-squared 0.563331 S.D. dependent var 4.193696
S.E. of regression 2.771233 Akaike info criterion 4.922909
Sum squared resid 307.1892 Schwarz criterion 5.005656
Log likelihood –101.3811 Durbin–Watson stat 2.665938
F-statistic 53.89268
Prob(F-statistic) 0.000000

Table 7.10 Regression results without Louisiana.

12 For an accessible discussion, see Samprit Chatterjee and Ali S. Hadi, Regression Analysis by Example,

4th edn, Wiley, New Jersey, 2006, Chapter 4.

13 See, for instance, Chatterjee and Hadi, op cit., pp. 103–8.



7.7 Probability distribution of the error term

The classical normal linear regression model (CNLRM), an extension of CLRM, as-

sumes that the error term ui in the regression model is normally distributed.14 This as-

sumption is critical if the sample size is relatively small, for the commonly used tests of

significance, such as t and F, are based on the normality assumption.

It is thus important that we check whether the error term is normally distributed.

There are several tests of normality, but the most popularly used test is the

Jarque–Bera (JB) test of normality. Before we present this test, it is important to keep

in mind that the JB test is a large sample test and may not be appropriate in small sam-

ples. The formula for the test is as follows:
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where n is the sample size, S = skewness coefficient, and K = kurtosis coefficient.15 For

a normally distributed variable S = 0 and K = 3. It is obvious from the JB statistic that if

S = 0 and K = 3, its value is zero. Therefore, the closer is the value of JB to zero, the

better is the normality assumption. Of course, we can always use the chi-square distri-

bution to find the exact statistical significance (i.e. the p value) of the JB statistic.

Since in practice we do not observe the true error term, we use its proxy, ei. The null

hypothesis is the joint hypothesis that S = 0 and K = 3. Jarque and Bera have shown that

the statistic given in Eq. (7.7) follows the chi-square distribution with 2 df. There are

two degrees of freedom because we are imposing two restrictions, namely, that skew-

ness is zero and kurtosis is 3.

Therefore, if in an application the computed JB statistic (i.e. the chi-square statistic)

exceeds the critical chi-square value, say, at the 5% level, we reject the hypothesis that

the error term is normally distributed.

JB test of the cigarette smoking and lung cancer example

Returning to our cigarette smoking and lung cancer example, the JB statistic for the re-

siduals for the regression given in Table 7.9 is 0.4106 with a p value of 0.41, and for the

regression in Table 7.10, the JB statistic is 1.48 with a p value of 0.47. Both these JB

values suggest that the assumption of normality of the error term may be appropriate

in both models, although the number of observations (43 and 42) is not very large.

JB test of the wage determination model

In the linear wage model given in Table 7.3, the JB statistic of the residuals is about

4,130, a huge number, with a p value practically zero. For the log wage model given in

Table 7.7, the JB statistic of the residuals is also large, about 302, with a p value of
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14 Note that the normality assumption pertain to the error term, ut, included in the population

regression and not to the residual term, ei, included in the sample regression, although we use the latter to

learn about the former. This is because in practice we never observe ui.

15 Just as the variance of a random variable is the second moment about the mean value of the variable,

skewness is the third and kurtosis is the fourth moment, all measured from the mean value. Skewness is a

measure of symmetry and kurtosis is a measure of tallness or flatness of the probability distribution.



almost zero.16 The use of the JB statistic in both cases may be appropriate because we

have a fairly large sample of 1,289 observations.

On the basis of the JB statistic, it would be hard to maintain that the error term in

the wage regression is normally distributed.

It may be interesting to note here that the distribution of wages is highly

non-normal, with S being 1.84 and K being 7.83 (the JB statistic is about 1900). On the

other hand, the distribution of log of wages is normal, with an S value of about 0.1 and a

K value of about 3.2 (the JB statistic is only 2.8) (see Exercise 7.8.).

Non-normal error term

If the error term ui is not normally distributed, it can be stated that the OLS estimators

are still best linear unbiased estimators (BLUE); that is, they are unbiased and in the

class of linear estimators they have minimum variance. This is not a surprising finding,

for in establishing the BLUE (recall the Gauss–Markov theorem) property we did not

invoke the normality assumption.

What then is the problem? The problem is that for the purpose of hypothesis testing

we need the sampling, or probability, distributions of the OLS estimators. The t and

F tests that we have used all along assume that the probability distribution of the error

term follows the normal distribution. But if we cannot make that assumption, we will

have to resort to large or asymptotic sample theory.

Without going into technical details, under the assumptions of CLRM (not

CNLRM) in large samples, the OLS estimators are not only consistent (i.e. they con-

verge to their true values as the sample size increases indefinitely), but are also asymp-

totically normally distributed with the usual means and variances discussed in

Chapter 1. Interestingly, the t and F tests that we have used extensively so far are also

approximately valid in large samples, the approximation being quite good, as the

sample size increases indefinitely.

Therefore, even though the JB statistic showed that the errors in both the linear

wage model and the log-linear wage model may not be normally distributed, we can

still use the t and F tests because our sample size of 1,289 observations is quite large.

7.8 Random or stochastic regressors

The CLRM, as discussed in Chapter 1, assumes that the regressand is random but the

regressors are nonstochastic or fixed – that is, we keep the values of the regressors

fixed and draw several random samples of the dependent variable. For example, in the

regression of consumption expenditure on income, we assume that income levels are

fixed at certain values and then draw random samples of consumers at the fixed levels

of income and note their consumption expenditure. In regression analysis our objec-

tive is to predict the mean consumption expenditure at various levels of fixed income.

If we connect these mean consumption expenditures the line (or curve) thus drawn

represents the (sample) regression line (or curve).
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16 For the linear wage model in Table 7.3 S is about 2 and K = 10.79, and for the log wage model in Table

7.7, S = –0.44 and K = 5.19. In both cases the S and K measures are far from the normal values of 0 and 3,

respectively.
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Although the assumption of fixed regressors may be valid in several economic situ-

ations, by and large it may not be tenable for all economic data. In other words, we

assume that both Y (the dependent variable) and the Xs (the regressors) are drawn ran-

domly. This is the case of stochastic or random regressors. The important question

that arises is whether the results of regression analysis based on fixed regressors also

hold if the regressors are as random as the regressand. Although a detailed answer will

be given in Chapter 19, for the topic is rather involved, we can make the following

points.

If the stochastic regressors and the error term u are independently distributed, the

classical results discussed in Chapter 1 (the Gauss–Markov theorem) continue to hold

provided we stress the fact that our analysis is conditional on given values of the

regressors. If, on the other hand, the random regressors and the error term are

uncorrelated, the classical results hold asymptotically – that is in large samples.17

But what happens if neither of these conditions holds? In other words, what hap-

pens if the regressors and the error term u are correlated? We have already discussed

the case of measurement errors in the regressor earlier and stated that in this situation

we may have to resort to alternative estimating method(s), such as instrumental vari-

ables. But there are other situations where the regressors and the error term are corre-

lated. Because of the importance of this topic, we discuss it at length in Chapter 19 on

stochastic regressors and instrumental variables estimation. Suffice it to note here that

in some situations we can find appropriate instruments, so that using them in lieu of

the original stochastic regressors we can obtain consistent estimates of the parameters

of interest.

7.9 The simultaneity problem

Our focus thus far has been on single-equation regression models, in that we ex-

pressed a single dependent variable Y as a function of one or more explanatory vari-

ables, the Xs. If there was any causality between Y and the Xs, it was implicitly assumed

that the direction of causality ran from the Xs to Y.

But there are many situations where such a unidirectional relationship between Y

and the Xs cannot be maintained, for it is quite possible that some of the Xs affect Y but

in turn Y also affects one or more Xs. In other words, there may be a feedback relation-

ship between the Y and X variables. To take into account such feedback relationships,

we will need more than one regression equation. This leads to a discussion of simulta-

neous equation regression models – that is, models that take into account feedback

relationships among variables.18 In what follows, we discuss briefly why OLS may not

be appropriate to estimate a single equation that may be embedded in a simultaneous

equation model containing two or more equations.
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17 Remember that independence implies no correlation, but no correlation does not necessarily imply

independence.

18 In the 1970s and 1980s the topic of simultaneous equation models was an integral part of every

econometrics student’s training. But of late, these models have lost favor because of their poor forecasting

performance. Competing econometric models involving multi-equations, such as autoregressive moving

average (ARMA) and vector autoregression (VAR), are increasingly replacing the traditional simultaneous

equation models. However, the Federal Reserve Board and the US Department of Commerce and several

private forecasting agencies still use them along with ARMA and VAR models.
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Simple Keynesian model of income determination

Every student of introductory macroeconomics knows the following Keynesian model

of the determination of aggregate income. Here we replace the Y and X notation with

the traditional macroeconomics mnemonics, namely C for consumption expenditure,

Y for income and I for investment:

Consumption Function: C B B Y u Bt t t� � � � �1 2 20 1; (7.8)

Income Identity: Yt = Ct + It (7.9)

The simple Keynesian model assumes a closed economy – that is, no foreign trade or

government expenditure.19

When dealing with simultaneous equation models, we have to learn some new vo-

cabulary. First, we have to distinguish between endogenous and exogenous variables.

Endogenous variables are those variables whose values are determined in the model,

and exogenous variables are those variables whose values are not determined in the

model. In the simple Keynesian model C and Y are endogenous, or jointly dependent,

variables, and I is an exogenous variable. Sometimes, exogenous variables are called

predetermined variables, for their values are determined independently or fixed,

such as the tax rates fixed by the government.20

Another distinction is between structural, or behavioral, equations and identities.

Structural equations depict the structure or behavior of a particular sector of the econ-

omy, such as the household sector. The consumption function in the Keynesian model

tells us how the household sector reacts to changes in income. The coefficients in the

structural equations are known as structural coefficients: B1 and B2 in our example.

B2 is the marginal propensity to consume (MPC) – that is the additional amount of

consumption expenditure for an additional dollar’s worth of income – which lies be-

tween 0 and 1.

Identities, like Eq. (7.9), are true by definition; in our example total income is equal

to consumption expenditure and investment expenditure.

The simultaneity bias

Suppose we want to estimate the consumption function given in Eq. (7.8) but

neglect to take into account the second equation in the system. What are the

consequences? To see them, suppose the error term u includes a variable that cannot

be easily measured, say, consumer confidence. Further suppose that consumers

become upbeat about the economy because of a boom in the stock market or an im-

pending tax cut. This results in an increase in the value of u. As a result of the increase
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19 Of course, we can extend the model to include government expenditure and foreign trade, in which

case it will be an open economy model.

20 It should be noted that the determination of which variables are endogenous and which are exogenous

is up to the researcher. Variables such as weather, temperature, hurricanes, earthquakes and so on, are

obviously exogenous variables. If we extend the simple Keynesian model to make investment as a function of

interest rate, then investment becomes an endogenous variable and interest rate becomes exogenous. If we

have another equation that gives interest rate as a function of the money supply, then interest rate becomes

endogenous and money supply becomes exogenous. As you can see, the simple Keynesian model can be

expanded very quickly. It is also clear that sometimes the classification of variables into endogenous and

exogenous categories can become arbitrary, a criticism leveled against simultaneous equation modeling by

the advocates of vector autoregression (VAR), a topic we discuss in Chapter 16.



in u, consumption expenditure increases. But since consumption expenditure is a

component of income, this in turn will push up income, which in turn will push up

consumption expenditure, and so on. So we have this sequence: u C Y C' ' ' . As

you can see, income and consumption expenditure are mutually interdependent.

Therefore, if we disregard this interdependence and estimate Eq. (7.8) by OLS, the

estimated parameters are not only biased (in small or finite samples), but are also in-

consistent (in large samples). The reason for this is that in the consumption function,

Yt and ut are correlated, which violates the OLS assumption that the regressor(s) and

the error term are uncorrelated. The proof of this statement is given in the appendix to

this chapter. This is similar to the case of stochastic regressor(s) correlated with the

error term, a topic we have discussed earlier.

How then do we estimate the parameters of the consumption function? We can use

the method of indirect least squares (ILS) for this purpose, which we now discuss.

The method of indirect least squares (ILS)

There is an interesting way of looking at Eqs. (7.8) and (7.9). If you substitute Eq. (7.8)

into Eq. (7.9), you will obtain, after simple manipulation, the following equation.

Y
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B B
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B
u

A A I v

t t t

t t

�
�

�
�

�
�
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2 2 2
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1 (7.10)

Similarly, if you substitute Eq. (7.9) into Eq. (7.8), you will obtain:
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Each of these equations expresses an endogenous variable as a function of exogenous,

or predetermined, variable(s) and the error term. Such equations are called re-

duced-form equations.

Before proceeding further, it may be noted that the coefficients of the reduced form

equations are called impact multipliers. They give the ultimate impact of a dollar’s in-

crease in investment (or any other variable on the right-hand side of the preceding

equations) on consumption and income. Take, for instance, the coefficient of It

( /( ))� �B B2 21 . Let us increase investment by one dollar. Then from Eq. (7.9), income

will initially increase by one dollar. This will then lead to an increase in consumption of

a B2-dollar, which will then lead to a B2 increase in income, which will then lead to B2
2

increase in consumption and so on. The ultimate effect will be an increase in con-

sumption of B B2 21/( )� .21 So if MPC B2 = 0.7, the ultimate impact of a dollar’s in-

crease in investment expenditure on consumption expenditure will be 07 03 233. / . $ .� .

Of course, the higher the MPC, the higher is the impact on the consumption

expenditure.

Now the reduced form equations can be estimated by OLS, for the exogenous vari-

able I and the error term are uncorrelated, by design. The key question now is whether
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2
3

2 2 2
2

2 21 1� � � � � � � � �� �( ) / ( ), following the

sum of an infinite geometric series. Keep in mind that 0 < B2 < 1.



we can obtain unique estimates of the structural coefficients from the reduced from

coefficients. This is known as the problem of identification. Thus, if we can uniquely

estimate the coefficients of the consumption function from the reduced form coeffi-

cients, we say that the consumption function is identified. So far as Eq. (7.9) is con-

cerned, we do not have the problem of identification, for that equation is an identity

and all its coefficients are known (= 1).

This process of obtaining the parameters of the structural equations from the re-

duced form coefficients is known as the method of indirect least squares (ILS), be-

cause we obtain the estimates of the structural coefficients indirectly by first

estimating the reduced form coefficients by OLS. Of course, if an equation is not iden-

tified, we cannot obtain the estimates of its parameters by OLS, or for that matter, by

any other method.

Returning to the consumption function, you can verify that

B
A

A
1

1

2

� and B
A

A
2

4

2

� (7.12)

So we can obtain unique values of the parameters of the consumption function

from the reduced form coefficients. But note that the structural coefficients are non-

linear functions of the reduced form coefficients.

In simultaneous equation models involving several equations it is tedious to obtain

reduced form coefficients and then try to retrieve the structural coefficients from

them. Besides, the method of indirect least squares is of no use if an equation is not

identified. In that case we will have to resort to other methods of estimation. One such

method is the method of two-stage least squares (2SLS), which we discuss at some

length in Chapter 19 on instrumental variables.

Before we illustrate ILS with a numerical example, it may be noted that the estima-

tors of the structural coefficients obtained from ILS are consistent estimators – that is,

as the sample size increases indefinitely, these estimators converge to their true values.

But in small, or finite, samples, the ILS estimators may be biased. As noted before, the

OLS estimators are biased as well as inconsistent.

An illustrative example: aggregate consumption function for USA,
1960–2009

To illustrate the method of indirect least squares, we obtained data on consumption

expenditure (PCE), investment expenditure (GDPI), and income(Y) for the USA for

1960–2009; the data for 2009 are provisional. GDPI is gross domestic private invest-

ment and PCE is personal consumption expenditure. The data are in Table 7.11,

which can be found on the companion website.

It should be pointed out that the data on income are simply the sum of consumption

and investment expenditure, following the Keynesian income identity. We first esti-

mate the two reduced form equations given in Eqs. (7.10) and (7.11), which are given

by Tables 7.12 and 7.13.

Table 7.12 shows that if GDPI goes up by a dollar, on average, personal consump-

tion goes up by about $4.45, showing the power of the multiplier.

From Table 7.13 we see that if GDPI increases by a dollar, on average, income in-

creases by $5.45. Of this increase, $4.50 is for consumption expenditure and $1 for in-

vestment expenditure, thus satisfying the income identity.
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We can use the results in Tables 7.12 and 7.13 to estimate the original structural

parameters of the consumption function, using Eq. (7.12). The reader is urged to

verify the following consumption expenditure function, the empirical counterpart of

Eq. (7.8).

� . .C Yt t� � �201636 08165 (7.13)22

For comparison, we give the results of OLS in Table 7.14.

The results of ILS and OLS show that there is not much difference in the estimates

of MPC, but the intercepts in the two regressions are different. Of course, there is no

guarantee that in all applications OLS and ILS results will be similar. The advantage of
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Dependent Variable: PCE
Method: Least Squares
Sample: 1960 2009
Included observations: 50

Variable Coefficient Std. Error t-Statistic Prob.

C –109.9016 102.0025 –1.077440 0.2867

GDPI 4.450478 0.096194 46.26562 0.0000

R-squared 0.978067 Mean dependent var 3522.160
Adjusted R-squared 0.977610 S.D. dependent var 3077.678
S.E. of regression 460.5186 Akaike info criterion 15.14176
Sum squared resid 10179716 Schwarz criterion 15.21824
Log likelihood –376.5440 Durbin–Watson stat 0.555608
F-statistic 2140.508 Prob(F-statistic) 0.000000

Table 7.12 Reduced form regression of PCE on GDPI.

Dependent Variable: INCOME
Method: Least Squares
Date: 07/30/10 Time: 20:41
Sample: 1960 2009
Included observations: 50

Variable Coefficient Std. Error t-Statistic Prob.

C –109.9016 102.0025 –1.077440 0.2867

GDPI 5.450478 0.096194 56.66127 0.0000

R-squared 0.985269 Mean dependent var 4338.266
Adjusted R-squared 0.984962 S.D. dependent var 3755.416
S.E. of regression 460.5186 Akaike info criterion 15.14176
Sum squared resid 10179716 Schwarz criterion 15.21824
Log likelihood –376.5440 Durbin–Watson stat 0.555608
F-statistic 3210.500 Prob(F-statistic) 0.000000

Table 7.13 Reduced form regression of income on GDPI.

22 Since the structural coefficients are nonlinear functions of the reduced form coefficients, there is no

simple way to obtain the standard errors of the structural coefficients.



ILS is that it takes into account directly the simultaneity problem, whereas OLS simply

ignores it.

We have considered a very simple example of simultaneous equation models. In

models involving several equations, it is not easy to identify if all the equations in the

system are identified. The method of ILS is too clumsy to identify each equation. But

there are other methods of identification, such as the order condition of identifica-

tion and the rank condition of identification. We will not discuss them here, for that

will take us away from the main theme of this chapter, which is to discuss the major

sources of specification errors. But a brief discussion of the order condition of identifi-

cation is given in Chapter 19. An extended discussion of this topic can be found in the

references.23

7.10 Dynamic regression models

Economic theory is often stated in static or equilibrium form. For example, elementary

economics teaches us that the equilibrium price of a commodity (or service) is deter-

mined by the intersection of the relevant demand and supply curves. However, the

equilibrium price is not determined instantaneously but by a process of trial and error,

which takes time. This leads us to a discussion of dynamic regression models. There-

fore, if we neglect to take into account the dynamic (i.e. time) aspect of a problem, we

will be committing a specification error.

To motivate the discussion, we consider the celebrated permanent income hypothe-

sis of Milton Friedman.24 In simple terms, it states that the current consumption (ex-

penditure) of an individual is a function of his or her permanent (i.e. life-long) income.

But how does one measure the permanent income? Based on quarterly data, Friedman

estimated permanent income as a weighted average of quarterly income going back
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Dependent Variable: PCE
Method: Least Squares
Date: 07/31/10 Time: 10:00
Sample: 1960 2009
Included observations: 50

Variable Coefficient Std. Error t-Statistic Prob.

C –31.88846 18.22720 –1.749498 0.0866

INCOME 0.819232 0.003190 256.7871 0.0000

R-squared 0.999273 Mean dependent var 3522.160
Adjusted R-squared 0.999257 S.D. dependent var 3077.678
S.E. of regression 83.86681 Akaike info criterion 11.73551
Sum squared resid 337614.8 Schwarz criterion 11.81200
Log likelihood –291.3879 Hannan–Quinn criter. 11.76464
F-statistic 65939.59 Durbin–Watson stat 0.568044
Prob(F-statistic) 0.000000

Table 7.14 OLS results of the regression of PCE on income.

23 See, for instance, Gujarati/Porter, op cit., Chapters 18–20.

24 Milton Friedman, A Theory of Consumption Function, Princeton University Press, New Jersey, 1957.



about 16 quarters. Letting Y represent consumption expenditure and X income,

Friedman estimated the following type of model:

Y A B X B X B X B X ut t t t t t� � � � � � �� � �0 1 1 2 2 16 16� (7.14)

where Xt is income in the current period (quarter), Xt–1 is income lagged one quarter,

Xt–2 is income lagged two quarters, and so on. The B coefficients are the weights at-

tached to the income in the various quarters. We assume that the model (7.14) satisfies

the usual OLS assumptions. For discussion purposes, we will call (7.14) the consump-

tion function.

In the literature, model (7.14) is known as a distributed lag model (DLM) because

the current value of the dependent variable Y is affected by the current and lagged

values of the explanatory variable X. This is not difficult to see. Suppose you get an in-

crease in your salary this year. Assuming this increase is maintained, you will not nec-

essarily rush to spend the increase in your income immediately. Rather, you are likely

to spread it over a period of time.

Before we turn to the estimation of the DLM, it may be useful to interpret the model

in (7.14). The coefficient B0 is known as the short-run or impact multiplier, for it

gives the change in the mean value of Y following a unit change in X in the same time

period. If the change in X is kept at the same level thereafter, (B0 + B1) gives the change

in mean Y in the next period, (B0 + B1 + B2) in the following period, etc. These partial

sums are called interim or intermediate multipliers. After k periods (if that is the

maximum lag length under consideration), we obtain:

B B B Bk k

k

� � � �� 0 1
0

� (7.15)

which is known as the long-run or total multiplier. It gives the ultimate change in

mean consumption expenditure following a (sustained) unit increase in the income.

Thus, in the following hypothetical consumption function,

Y X X X Xt t t t t� � � � �� � �constant 0 4 02 015 011 2 3. . . .

the impact multiplier will be 0.4, the interim multiplier will be (0.75) and the total, or

long-run, multiplier will be 0.85. If, for example, income increases by $1000 in year t,

and assuming this increase is maintained, consumption will increase by $400 in the

first year, by another $200 in the second year, and by another $150 in the third year,

with the final total increase being $750. Presumably, the consumer will save $250.

Returning to the model (7.14), we can estimate it by the usual OLS method.25 But

this may not be practical for several reasons. First, how do we decide how many lagged

terms we use? Second, if we use several lagged terms, we will have fewer degrees of

freedom to do meaningful statistical analyses, especially if the sample size is small.

Third, in time series data successive values of the lagged term are likely to be highly

correlated, which may lead to the problem of multicollinearity, which, as we noted in

the chapter on multicollinearity, will lead to imprecise estimation of the regression

coefficients.
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25 Provided that the regressors (current and lagged) are weakly exogenous, that is, they are uncorrelated

with the error term. In some cases a stronger assumption is needed in that the regressors are strictly

exogenous, that is, they are independent of the past, current and future values of the error term.



To overcome some of these drawbacks of the DLM some alternatives have been

suggested in the literature. We will discuss only one of these alternatives, namely the

Koyck distributed lag model.26

The Koyck distributed lag model27

To understand this model, let us express (7.14) in a more general form:

Y A B X B X B X ut t t t t� � � � � �� �0 1 1 2 2 � (7.16)

This is called an infinite DLM because we have not defined the length of the lag; that

is, we have not specified how far back in time we want to travel. By contrast, the model

in (7.14) is a finite DLM, for we have specified the length of the lag: 16 lagged terms.

The infinite DLM in (7.16) is for mathematical convenience, as we will show.

To estimate the parameters of (7.16), Koyck used the Geometric Probability Dis-

tribution. Assuming that all the B coefficients in (7.16) have the same sign, which

makes sense in our consumption function, Koyck assumed that they decline geometri-

cally as follows:

B B kk
k� � � �0 0 1 0 1� �, , , ;� (7.17)

where � is known as the rate of decline or decay and where( )1� � is known as the speed of

adjustment, that is, how fast consumption expenditure adjusts to the new income level.

Apart from B0, the value of each Bk depends on the value of �: a value of �close to 1

would suggest that Bk declines slowly, that is, X values in distant past will have some

impact on the current value of Y. On the other hand, a value of � close to zero would

suggest that the impact of X in the distant past will have little impact on the current Y.

What Koyck is assuming is that each successive B coefficient is numerically smaller

than each preceding B (which follows from the assumption that � is less than 1), sug-

gesting that as we go back into the distant past, the effect of that lag on Y becomes pro-

gressively smaller. In the consumption function of (7.14) this makes good sense, for a

person’s consumption expenditure today is less likely to be affected by the distant past

income than the recent past income.

How does this help us in estimating the infinite DLM? To see how, let us express

(7.16) as

Y A B X B X B X B X ut t t t t t� � � � � � �� � �0 0 1 0
2

2 0
3

2� � � � (7.18)

where use is made of (7.17).

However, (7.18) is not easy to estimate, for we still have to estimate an infinite

number of coefficients and the adjustment coefficient �enters highly nonlinearly. But

Koyck uses a clever trick to get around this problem. He lags (7.18) by one period to

obtain:

Y A B X B X B X ut t t t t� � � � �� � � � � �1 0 1 0 2 0
2

3 1� � � (7.19)

He then multiplies (7.19) by � to obtain:
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26 For details, see Gujarati/Porter, Ch. 17. For an advanced discussion, see James H. Stock and Mark W.

Watson (2011), Introduction to Econometrics, 3rd edn, Addison-Wesley, Boston, Ch. 15.

27 L. M. Koyck (1954), Distributed Lags and Investment Analysis, North Holland Publishing Company,

Amsterdam.



� � � � � �Y A B X B X B X ut t t t t� � � � �� � � � � �1 0 1
2

0 2
3

0 3 1� (7.20)

Subtracting (7.20) from (7.18), he obtains:

Y Y A B X u ut t t t t� � � � � �� �� � �1 0 11( ) ( ) (7.21)

Rearranging (7.21), he finally obtains:

Y A B X Y vt t t t� � � � ��( )1 0 1� � (7.22)

where v u ut t t� � �� 1.

It is interesting to note that the lagged value of the dependent variable appears as a

regressor in this model. Such models are called autoregressive models, for they in-

volve the regression of the dependent variable upon its lagged value(s) among other in-

dependent explanatory variable(s).

A great advantage of the Koyck transformation is that instead of estimating an infi-

nite number of parameters, as in (7.16), we now have to estimate only three parameters

in model (7.22), a tremendous simplification of the original model. Are there any prob-

lems in estimating (7.22)? Before we answer that question, it is interesting to note that

the short-run and long-run impacts of a unit change in X on the mean value of Y can be

readily computed from (7.22). The short-run impact is given by the coefficient of X, B0,

and the long-run impact of a sustained unit change in X is given by B0 1/( )� � .28 Since �
lies between 0 and 1, the long-run impact will be greater than the short-run impact,

which makes sense because it takes time to adjust to the changed income.

The estimation of (7.22) poses formidable challenges: First, if the error term ut sat-

isfies the classical assumptions (i.e. zero mean value, constant variance and no serial

correlation), the composite error term vt in (7.22) may not satisfy the classical assump-

tions. As a matter of fact, it can be shown that the error term vt is serially correlated.

Second, the lagged value of the dependent variable Y appears as an explanatory vari-

able in (7.22). Since Yt is a stochastic variable, so will Yt–1. Since the classical OLS

model assumes that the explanatory variables must either be nonstochastic, or if sto-

chastic, they must be distributed independently of the error term, we must find out if

the latter is the case. In (7.22) it can be shown that Yt–1 and vt are correlated.29 In this

situation, the OLS estimators are not even consistent. Third, as noted in the chapter

on autocorrelation, we cannot use the Durbin–Watson d statistic to check for

autocorrelation in vt if a lagged dependent variable appears as an explanatory variable

in the model, as in (7.22), although Durbin himself has developed a test, the Durbin h

test, to test for serial correlation in this situation. For these reasons, the Koyck model,

although elegant, poses formidable estimation problems. What then are the solutions?

First, since the error term vt is autocorrelated, the standard errors of the OLS esti-

mators are not reliable, even though the OLS estimators are still consistent. But we can

resolve this problem by using the HAC standard errors discussed in the chapter on

autocorrelation.

But the more serious problem is the correlation between the lagged Yt and the

error term vt. As we know from previous discussion, in this situation the OLS estima-

tors are not even consistent. One solution to this problem is to find a proxy for the
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28 This is because in the long-runY Y Yt t*� � �1, so transferring Yt–1 to the left-hand side of (7.22) and

simplifying we obtain the long-run impact, as shown.

29 For a proof of this and the precedent statement, see Gujarati/Porter, 5th edn, p. 635.



lagged dependent variable, Yt–1, such that it is highly correlated with Yt–1 and yet

uncorrelated with the error term vt. Such a proxy is known as an instrumental vari-

able (IV), but it is not always easy to find IVs.30 In the example discussed below we

will show how we can find a proxy for the lagged consumption expenditure in our

consumption example.

An illustrative example

To illustrate the model (7.22), we use data on personal consumption expenditure

(PCE) and disposable (i.e. after tax) income (DPI) for the USA for the period 1960 to

2009 (all data in 2005 dollars). (See data appendix on p. 149.)

For our example, using OLS we obtain the results in Table 7.15.

Because of the problems with the OLS standard errors in the presence of

autocorrelation, we obtained robust standard errors (i.e. Newey–West standard

errors) for our consumption function, which yielded the results in Table 7.16.

Although the estimated regression coefficients in the two tables are the same (as they

should be under the HAC procedure), the estimated standard errors are somewhat

higher under HAC. Even then, all the estimated coefficients are statistically highly sig-

nificant, as reflected in the low p values of the estimated t values. This probably suggests

that the problem of autocorrelation may not be very serious in the present case.

Accepting the results for the time being, we still have to resolve the possibility of

correlation between the lagged PCE and the error term, it seems the short-run mar-

ginal propensity to consume (MPC) out of disposable income is about 0.43, but the

long-run MPC is about 0.98.31 That is, when consumers have had time to adjust to a

dollar’s increase in PDI, they will increase their mean consumption expenditure by

almost a dollar in the long run, but in the short run, consumption increases by only

about 43 cents.
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Dependent Variable: PCE
Method: Least Squares
Date: 07/07/11 Time: 16:40
Sample (adjusted): 1961 2009
Included observations: 49 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C –485.8849 197.5245 –2.459872 0.0177

DPI 0.432575 0.081641 5.298529 0.0000

PCE(–1) 0.559023 0.084317 6.630052 0.0000

R-squared 0.998251 Mean dependent var 19602.16
Adjusted R-squared 0.998175 S.D. dependent var 6299.838
S.E. of regression 269.1558 Akaike info criterion 14.08773
Sum squared resid 3332462. Schwarz criterion 14.20355
Log likelihood –342.1493 Hannan–Quinn criter. 14.13167
F-statistic 13125.09 Durbin–Watson stat 0.708175
Prob(F-statistic) 0.000000

Table 7.15 OLS results of regression (7.22).

30 Chapter 19 is devoted to a discussion of the method of instrumental variable estimation.

31 This is obtained as 0.4325/(1 – �) = 0.4325/0.441, the value of � being about 0.5590.



The estimated � of about 0.56 lies between 0 and 1, as expected. Thus the speed of

adjustment of PCE to a change in DPI is not very slow or not very fast.

To see how quickly PCE adjusts to an increase in DPI, we can compute the so-called

median and mean lag times. The median lag time is the time in which the first half, or

50%, of the total change in PCE follows a unit sustained change in DPI. The mean lag is

the weighted average of all the lags involved, with the respective B coefficients serving

as the weights.

For the Koyck model, it can be shown that these lags are as follows:

Median lag � �
log

log

2

�

and

Mean lag =
�

�1�

The reader can verify that for the present example the median and mean lags are

about 1.19 and 1.27, respectively, noting that � is about 0.56. In the former case, about

50% of the total change in mean PCE is obtained in about 1.2 years and in the latter

case the average lag is about 1.3 years.

As noted, the lagged DPI and the error term (7.22) are likely to be correlated, which

would render the results in Table 7.16 suspect, for in this situation the OLS estimators

are not even consistent. Can we find a proxy for the lagged PCE such that that proxy is

highly correlated with it, but is uncorrelated with the error term in (7.22)? Since lagged

PCE and lagged DPI are likely to be highly correlated, and since the latter by assump-

tion is (weakly) exogenous, we can use lagged DPI as a proxy for lagged PCE.32
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Dependent Variable: PCE
Method: Least Squares
Date: 07/07/11 Time: 16:46
Sample (adjusted): 1961 2009
Included observations: 49 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey–West fixed
bandwidth = 4.0000)

Variable Coefficient Std. Error t-Statistic Prob.

C –485.8849 267.7614 –1.814619 0.0761

DPI 0.432575 0.098339 4.398823 0.0001

PCE(–1) 0.559023 0.102057 5.477587 0.0000

R-squared 0.998251 Mean dependent var 19602.16
Adjusted R-squared 0.998175 S.D. dependent var 6299.838
S.E. of regression 269.1558 Akaike info criterion 14.08773
Sum squared resid 3332462. Schwarz criterion 14.20355
Log likelihood –342.1493 Hannan–Quinn criter. 14.13167
F-statistic 13125.09 Durbin–Watson stat 0.708175
Prob(F-statistic) 0.000000

Table 7.16 Results of regression with robust standard errors.

32 Calculations will show that the correlation coefficient between the two is about 0.998.



Therefore, instead of estimating (7.22), we can estimate

PCE A B DPI B DPI ut t t t� � � ��1 2 1 (7.23)

which is a finite order DLM. The results of this regression, with HAC errors, are given

in Table 7.17.

The lagged DPI coefficient in this regression is not statistically significant, which

may be due to the fact that current and lagged DPI are so highly correlated. If you add

the coefficients of current and lagged DPI, it is about 0.9725, which gives the long-run

MPC.

It should be noted that the proxy we have chosen may not be the right one.33 But as

noted previously, and as will be discussed more fully in Chapter 19, finding appropri-

ate proxies is not always easy.

Autoregressive Distributed Lag Models (ARDL)

So far we have considered autoregressive and distributed lag models. But we can com-

bine the features of these models in a more general dynamic regression model, known

as the Autoregressive Distributed Lag Models (ARDL).

To keep the discussion simple, we consider one dependent variable, or regressand,

Y and one explanatory variable, or regressor, X, although the discussion can be ex-

tended to models that contain more than one regressor and more than one dependent

variable, a topic explored more fully in Chapters 13 and 16. Now consider the

following model:
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Dependent Variable: PCE
Method: Least Squares
Date: 07/08/11 Time: 08:51
Sample (adjusted): 1961 2009
Included observations: 49 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey–West fixed
bandwidth = 4.0000)

Variable Coefficient Std. Error t-Statistic Prob.

C –1425.511 372.3686 –3.828224 0.0004

DPI 0.934361 0.175986 5.309287 0.0000

DPI(–1) 0.038213 0.177358 0.215455 0.8304

R-squared 0.996583 Mean dependent var 19602.16
Adjusted R-squared 0.996434 S.D. dependent var 6299.838
S.E. of regression 376.1941 Akaike info criterion 14.75736
Sum squared resid 6510013. Schwarz criterion 14.87318
Log likelihood –358.5553 Hannan–Quinn criter. 14.80130
F-statistic 6707.481 Durbin–Watson stat 0.351356
Prob(F-statistic) 0.000000

Table 7.17 The results of regression (7.23) using HAC standard errors.

33 If we had data on consumer’s wealth (W), we could use lagged W for the lagged DPI, for they are likely

to be highly correlated. However, it is not easy to find data on consumer wealth.
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This equation can be written more compactly as:
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1 0

(7.25)

In this model the lagged Ys constitute the autoregressive part and the lagged Xs

constitute the distributed part of the ARDL(p, q) model, for there are p autoregressive

terms and q distributed lag terms.

An advantage of such an ARLD model is that it not only captures the dynamic ef-

fects of the lagged Ys but also those of the lagged Xs. If a sufficient number of lags of

both variables are included in the model, we can eliminate autocorrelation in the error

term, the choice of the number of lags included in the model being determined by

Akaike or a similar information criterion. Such models are often used for forecasting

and also for estimating the multiplier effects of the regressors in the model.

Before we consider the estimation and interpretation of this model, as well as the

nature of the regressand, regressors and the error term, it may be useful to know why

such models can be useful in empirical work.34 One classic example is the celebrated

Phillips curve. Based on historical data, Phillips found an inverse relationship be-

tween inflation and unemployment, although the initial Phillips curve has been modi-

fied in several ways.35 Since current inflation is likely to be influenced by lagged

inflation (because of inertia) as well as the current and past unemployment rates, it is

appropriate to develop an ARDL model for forecasting and policy purposes.36 For an-

other example, consider the sale of a product in relation to advertising expenditure on

that product. The sale of a product in the current time period is likely to depend on the

sale of that product in the previous time periods as well as the expenditure on advertis-

ing in the current and previous time periods.

In our consumption function example we can also argue that current consumption

expenditure is dependent on past consumption expenditures as well current and past

levels of incomes, the number of lags being determined empirically using a suitable in-

formation criterion, such as the Akaike Information criterion.

To minimize the algebra, let us consider an ARDL (1,1) model for our consumption

function.

Y A A Y B X B X u At t t t t� � � � � �� �0 1 1 0 1 1 1 1, (7.26)37

where Y = PCE and X = DPI.
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34 For a detailed but advanced discussion see David F. Henry (1995), Dynamic Econometrics, Oxford

University Press.

35 For a chronology of the various forms of Phillips curve, see Gordon, R. J. (2008), The history of the

Phillips curve: an American perspective’, a keynote address delivered at the Australasian Meetings of the

Econometric Society. See http://www.nzae.org.nz/conference/2008/090708/nr1217302437.pdf.

36 For a concrete example, see R. Carter Hill, William E. Griffiths and Guay C. Lim (2011), Principles of

Econometrics, 3rd edn, Wiley, New York, pp. 367–369.

37 If the condition A1 < 1 is violated, Y will exhibit explosive behavior.



That is, personal consumption expenditure in the current period is related to per-

sonal consumption expenditure in the previous time period as well as on the current

and one-period lagged disposable income.

An important feature of the model (7.26) is that it enables us to find the dynamic ef-

fects of a change in DPI on current and future values of PCE. The immediate effect,

called the impact multiplier, of a unit change in DPI is given by the coefficient B0 .If

the unit change in DPI is sustained, it can be shown that the long-run multiplier is

given by

long-run multiplier =
B B

A

0 1

11

�

�
(7.27)

So if DPI increases by a unit (say, a dollar) and is maintained, the expected cumula-

tive increase in PCE is given by (7.27).38 In other words, if the unit increase in DPI is

maintained, Equation (7.27) gives the long-run permanent increase in PCE.

To illustrate the ARDL(1,1) model for our consumption example, we have to make

certain assumptions. First, the variables Y and X are stationary.39 Secondly, given the

values of regressors in Eq. (7.26), or more generally in Eq. (7.24), the expected mean

value of the error term ut is zero. Thirdly, if the error term in Eq. (7.24) is serially

uncorrelated, then the coefficients of the model (7.24), or in the present model (7.26),

estimated by OLS will be consistent (in the statistical sense). However, if the error

term is autocorrelated, the lagged Y term in Eq. (7.26), or generally in Eq. (7.24), will

also be correlated with the error term, in which case the OLS estimators will be incon-

sistent. So we need to find out if the error term is autocorrelated by any of the methods

discussed in the chapter on autocorrelation. Finally, it is assumed that the X variables

are exogenous – at least weakly so. That is, they are uncorrelated with the error term.

Now let us return to our illustrative example. The results of model (7.26) are given

in Table 7.18.

Assuming the validity of the model for the time being, the results show that the

impact multiplier of a unit change in DPI on PCE is about 0.82. If this unit change is

maintained, then the long-run multiplier, following Eq. (7.27), is about 0.9846.40 As

expected, the long-run multiplier is greater than the short-run multiplier. Thus a sus-

tained one dollar increase in DPI will eventually increase mean PCE by about 98 cents.

To allow for the possibility of serial correlation in the error term, we re-estimated

the model in Table 7.18 using the HAC procedure. The results are given in Table 7.19.

The HAC procedure does not change the estimated standard errors substantially,

perhaps suggesting that the serial correlation problem in our example may not be

serious.

We leave it to the reader to try different lagged values for p and q in the ARDL(p,q)

model for our data and compare the results with the ARDL(1,1) model.
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38 For a derivation of this result, see Marno Verbeek (2008), A Guide to Modern Econometrics, 3rd edn,

Wiley and Sons, Chichester, pp. 324–325.

39 Broadly speaking, a time series is stationary if its mean and variance are constant over time and the

value of covariance between two time periods depends only on the distance between the two time periods

and not the actual time at which the covariance is computed. This topic is discussed more thoroughly in

Chapter 13.

40 Long-run multiplier = (B0 + B1)/(1 – A1) = (0.8245 – 0.6329)/(1 – 0.8053) = 0.9846 (approx.)



Forecasting

How do we use the model (7.26) for forecasting? Suppose we want to forecast PCE for

1961, that is, one-period ahead of 1960 (our sample data ends in 1960). That is, we

want to estimate PCE1961. We can move the model one period ahead as follows:

PCE A A Y B X B X u1961 0 1 1960 0 1961 1 1960 1961� � � � � (7.28)

Here we know the values of Y1960 and X1960. But we do not know the values of X1961

and u1961. We can guess-estimate X1961 or obtain its value from any forecasting
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Dependent Variable: PCE
Method: Least Squares
Date: 08/14/11 Time: 13:35
Sample (adjusted): 1961 2009
Included observations: 49 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C –281.2019 161.0712 –1.745823 0.0877

DPI 0.824591 0.097977 8.416208 0.0000

PCE(–1) 0.805356 0.081229 9.914632 0.0000

DPI(–1) –0.632942 0.118864 –5.324935 0.0000

R-squared 0.998927 Mean dependent var 19602.16
Adjusted R-squared 0.998855 S.D. dependent var 6299.838
S.E. of regression 213.1415 Akaike info criterion 13.63990
Sum squared resid 2044318. Schwarz criterion 13.79433
Log likelihood –330.1775 Hannan–Quinn criter. 13.69849
F-statistic 13962.93 Durbin–Watson stat 1.841939
Prob(F-statistic) 0.000000

Table 7.18 OLS estimates of model (7.26).

Dependent Variable: PCE
Method: Least Squares
Date: 08/14/11 Time: 13:41
Sample (adjusted): 1961 2009
Included observations: 49 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey–West fixed
bandwidth = 4.0000)

Variable Coefficient Std. Error t-Statistic Prob.

C –281.2019 117.3088 –2.397107 0.0207

PCE(–1) 0.805356 0.071968 11.19044 0.0000

DPI 0.824591 0.114989 7.171026 0.0000

DPI(–1) –0.632942 0.119717 –5.286977 0.0000

R-squared 0.998927 Mean dependent var 19602.16
Adjusted R-squared 0.998855 S.D. dependent var 6299.838
S.E. of regression 213.1415 Akaike info criterion 13.63990
Sum squared resid 2044318. Schwarz criterion 13.79433
Log likelihood –330.1775 Hannan–Quinn criter. 13.69849
F-statistic 13962.93 Durbin–Watson stat 1.841939
Prob(F-statistic) 0.000000

Table 7.19 OLS estimates of model (7.26) with HAC standard errors.



method discussed in Chapter 16 on economic forecasting. We can put the value of

u1961 at zero. Then, using the estimated values of the parameters from Table 7.19, we

can estimate the estimated value of PCE1961.

A similar procedure can be used for multi-period ahead forecasts of PCE. But we

leave it to the reader to find the numerical values of PCE for one-period-ahead and

multi-period-ahead forecasts.

Concluding comments

In this section we have discussed three dynamic regression models: autoregressive,

distributed lag, and autoregressive and distributed lag models. We first considered an

infinite order (DLM), but because it involves estimating an infinite number of parame-

ters we converted it into an autoregressive model via the Koyck transformation. With

a numerical example involving real personal consumption expenditure and real dis-

posable income in the US for the period 1960–2009, we showed how these models are

estimated, noting the assumptions underlying these models and some of the

estimation problems.

We also discussed a simple autoregressive distributed lag model, ARDL(1,1), which

combines the features of both autoregressive and distributed lag models and showed

how we can compute the short-run and long-run multipliers following a permanent

unit increase in the value of a regressor. We also discussed the assumptions underlying

this model and some of the estimation procedures. We also discussed briefly how fore-

casts for future periods can be made based on the ARDL models.

The topic of dynamic regression models is vast and is mathematically complex. In

this section we have just touched the essential features of such models. For further

study of these models the reader is advised to consult the references.

7.11 Summary and conclusions

We have covered a lot of ground in this chapter on a variety of practical topics in ec-

onometric modeling.

If we omit a relevant variable(s) from a regression model, the estimated coefficients

and standard errors of OLS estimators in the reduced model are biased as well as in-

consistent. We considered the RESET and Lagrange Multiplier tests to detect the

omission of relevant variables bias.

If we add unnecessary variables to a model, the OLS estimators of the expended

model are still BLUE. The only penalty we pay is the loss of efficiency (i.e. increased

standard errors) of the estimated coefficients.

The appropriate functional form of a regression model is a commonly encountered

question in practice. In particular, we often face a choice between a linear and a

log-linear model. We showed how we can compare the two models in making the

choice, using the Cobb–Douglas production function data for the 50 states in the USA

and Washington, DC, as an example.

Errors of measurement are a common problem in empirical work, especially if we

depend on secondary data. We showed that the consequences of such errors can be

very serious if they exist in explanatory variables, for in that case the OLS estimators

are not even consistent. Errors of measurement do not pose a serious problem if they

are in the dependent variable. In practice, however, it is not always easy to spot the
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errors of measurement. The method of instrumental variables, discussed in Chapter

19, is often suggested as a remedy for this problem.

Generally we use the sample data to draw inferences about the relevant population.

But if there are “unusual observations” or outliers in the sample data, inferences based

on such data may be misleading. Therefore we need to pay special attention to outlying

observations. Before we throw out the outlying observations, we must be very careful

to find out why the outliers are present in the data. Sometimes they may result from

human errors in recording or transcribing the data. We illustrated the problem of out-

liers with data on cigarette smoking and deaths from lung cancer in a sample of 42

states, in addition to Washington, DC.

One of the assumptions of the classical normal linear regression model is that the

error term included in the regression model follows the normal distribution. This as-

sumption cannot always be maintained in practice. We showed that as long the as-

sumptions of the classical linear regression model (CLRM) hold, and if the sample size

is large, we can still use the t and F tests of significance even if the error term is not

normally distributed.

Finally, we discussed the problem of simultaneity bias which arises if we estimate an

equation that is embedded in system of simultaneous equations by the usual OLS. If

we blindly apply OLS in this situation, the OLS estimators are biased as well as incon-

sistent. There are alternative methods of estimating simultaneous equations, such as

the methods of indirect least-squares (ILS) or the two-stage least squares (2SLS). In

this chapter we showed how ILS can be used to estimate the consumption expenditure

function in the simple Keynesian model of determining aggregate income.

Exercises

7.1 For the wage determination model discussed in the text, how would you find out

if there are any outliers in the wage data? If you do find them, how would you decide if

the outliers are influential points? And how would you handle them? Show the neces-

sary details.

7.2 In the various wage determination models discussed in this chapter, how would

you find out if the error variance is heteroscedastic? If your finding is in the affirmative,

how would you resolve the problem?

7.3 In the chapter on heteroscedasticity we discussed robust standard errors or

White’s heteroscedasticity-corrected standard errors. For the wage determination

models, present the robust standard errors and compare them with the usual OLS

standard errors.

7.4 What other variables do you think should be included in the wage determination

model? How would that change the models discussed in the text?

7.5 Use the data given in Table 7.8 to find out the impact of cigarette smoking on

bladder, kidney, and leukemia cancers. Specify the functional form you use and pres-

ent your results. How would you find out if the impact of smoking depends on the type

of cancer? What may the reason for the difference be, if any?

7.6 Continue with Exercise 7.5. Are there any outliers in the cancer data? If there are,

identify them.
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7.7 In the cancer data we have 43 observations for each type of cancer, giving a total

of 172 observations for all the cancer types. Suppose you now estimate the following

regression model:

C B B Cig B Lung B Kidney B Leukemia ui i i i i i� � � � � �1 2 3 4 5

where C = number of deaths from cancer, Cig = number of cigarettes smoked, Lung = a

dummy taking a value of 1 if the cancer type is lung, 0 otherwise, Kidney = a dummy

taking a value of 1 if the cancer type is kidney, 0 other wise, and Leukemia = 1 if the

cancer type is leukemia, 0 otherwise. Treat deaths from bladder cancer as a reference

group.

(a) Estimate this model, obtaining the usual regression output.

(b) How do you interpret the various dummy coefficients?

(c) What is the interpretation of the intercept B1 in this model?

(d) What is the advantage of the dummy variable regression model over esti-

mating deaths from each type of cancer in relation to the number of ciga-

rettes smoked separately?

Note: Stack the deaths from various cancers one on top of the other to generate 172 ob-

servations on the dependent variable. Similarly, stack the number of cigarettes

smoked to generate 172 observations on the regressor.

7.8 The error term in the log of wages regression in Table 7.7 was found to be

non-normally distributed. However, the distribution of log of wages was normally dis-

tributed. Are these findings in conflict? If so, what may the reason for the difference in

these findings?

7.9 Consider the following simultaneous equation model:

Y A A Y A X ut t t t1 1 2 2 3 1 1� � � � (1)

Y B B Y B X ut t t t2 1 2 1 3 2 2� � � � (2)

In this model the Ys are the endogenous variables and the Xs are the exogenous vari-

ables and the us are stochastic error terms.

(a) Obtain the reduced form regressions.

(b) Which of the above equations is identified?

(c) For the identified equation, which method will you use to obtain the struc-

tural coefficients?

(d) Suppose it is known a priori that A3 is zero. Will this change your answer to

the preceding questions? Why?

7.10 For the ARDL(1,1) model, the long-run multiplier is given in Eq. (7.27). Suppose

for the illustrative example you estimate the following simple regression model:

PCEt = C1 + C2 DPIt + ut

Estimate this regression and show that C2 is equal to the long-run multiplier given in

Eq. (7.27). Can you guess why this is so? Can you establish this formally?
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Appendix

Inconsistency of the OLS estimators of the

consumption function

The OLS estimator of the marginal propensity to consume is given by the usual OLS

formula:
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where c and y are deviations from their mean values, e.g. c C Ct t� � .

Now substitute Eq. (7.8) into Eq. (1) to obtain:
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where use is made of the fact that �yt � 0 and � �Y y yt t t/ 2 1� .

Taking the expectation of Eq. (2), we obtain:
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Since E, the expectations operator, is a linear operator, we cannot take the expecta-

tion of the nonlinear second term in this equation. Unless the last term is zero, b2 is a

biased estimator. Does the bias disappear as the sample increases indefinitely? In other

words, is the OLS estimator consistent? Recall that an estimator is said to be consistent

if its probability limit (plim) is equal to its true population value. To find this out, we

can take the probability limit (plim) of Eq. (3):
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where use is made of the properties of the plim operator that the plim of a constant

(such as B2) is that constant itself and the plim of the ratio of two entities is the ratio of

the plim of those entities.

As the sample size n increases indefinitely, it can be shown that

p b B
B

u

y

lim( )2 2
2

2

2

1

1
� �

�

�

 
!
!

"

#
$
$






(5)

where 
u
2 and 
y

2 are the (population) variances of u and Y, respectively.

Since B2 (MPC) lies between 0 and 1, and since the two variances are positive, it is

obvious that p lim (b2) will always be greater than B2, that is, b2 will overestimate B2, no
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matter how large the sample is. In other words, not only is b2 biased, but it is inconsis-

tent as well.

Data appendix

Note: The data in this table are 2005 chained dollars.

Source: US Department of Commerce. The data can also be found on the website of

the Federal Reserve Bank of St Louis, USA.
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obs PCE DPI

1960 9871.000 10865.00

1961 9911.000 11052.00

1962 10243.00 11413.00

1963 10512.00 11672.00

1964 10985.00 12342.00

1965 11535.00 12939.00

1966 12050.00 13465.00

1967 12276.00 13904.00

1968 12856.00 14392.00

1969 13206.00 14706.00

1970 13361.00 15158.00

1971 13696.00 15644.00

1972 14384.00 16228.00

1973 14953.00 17166.00

1974 14693.00 16878.00

1975 14881.00 17091.00

1976 15558.00 17600.00

1977 16051.00 18025.00

1978 16583.00 18670.00

1979 16790.00 18897.00

1980 16538.00 18863.00

1981 16623.00 19173.00

1982 16694.00 19406.00

1983 17489.00 19868.00

1984 18256.00 21105.00

obs PCE DPI

1985 19037.00 21571.00

1986 19630.00 22083.00

1987 20055.00 22246.00

1988 20675.00 22997.00

1989 21060.00 23385.00

1990 21249.00 23568.00

1991 21000.00 23453.00

1992 21430.00 23958.00

1993 21904.00 24044.00

1994 22466.00 24517.00

1995 22803.00 24951.00

1996 23325.00 25475.00

1997 23899.00 26061.00

1998 24861.00 27299.00

1999 25923.00 27805.00

2000 26939.00 28899.00

2001 27385.00 29299.00

2002 27841.00 29976.00

2003 28357.00 30442.00

2004 29072.00 31193.00

2005 29771.00 31318.00

2006 30341.00 32271.00

2007 30838.00 32648.00

2008 30479.00 32514.00

2009 30042.00 32637.00
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8
The logit and probit models

The dependent variable in most regression models is numerical, measured usually on

a ratio scale. But in many applications the dependent variables are nominal in the

sense that they denote categories, such as male or female, married or unmarried, em-

ployed or unemployed, in the labor force or not in the labor force.

Suppose we have data on adults, some of who smoke and some who do not. Further

suppose we want to find out what factors determine whether a person smokes or not.

So the variable smoking status is a nominal variable; you either smoke or you do not.

How do we model such nominal variables? Can we use the traditional regression tech-

niques or do we need specialized techniques?

Regression models involving nominal scale variables are an example of a broader

class of models known as qualitative response regression models. There are a variety of

such models, but in this chapter we will consider the simplest of such models, namely

the binary or dichotomous or dummy dependent variable regression models. In subse-

quent chapters we will consider other types of qualitative response regression models.

The aim of this chapter is to show that although binary variable regression models

can be estimated with the least-squares method, such models are usually estimated by

specialized methods, such as logit and probit. First we will show why the least-squares

method is not appropriate and then consider the logit and probit models. We begin

with an example.

8.1 An illustrative example: to smoke or not to smoke

The data used here is a random sample of 1,196 US males.1 These data are provided in

Table 8.1, which can be found on the companion website.

The variables used in the analysis are as follows:

Smoker = 1 for smokers and 0 for nonsmokers

Age = age in years

Education = number of years of schooling

Income = family income

Pcigs = price of cigarettes in individual states in 1979
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1 These data are from the website of Michael P. Murray, Econometrics: A Modern Introduction,

Addison-Wesley, Boston, 2006. See http://www.aw.-bc.com/murray. But the data were originally used by

John Mullay, Instrumental-variable estimation of count data models: an application to models of cigarette

smoking behavior, The Review of Economics and Statistics, 1997.



8.2 The linear probability model (LPM)

Since the dependent variable, smoker, is a nominal variable, it takes a value of 1 (for

smoker) and 0 (for nonsmoker). Suppose we routinely apply the method of ordinary

least-squares (OLS) to determine smoking behavior in relation to age, education,

family income, and price of cigarettes. That is, we use the following model:

Y B B Age B Educ B Income

B Pcigs u

i i i i

i

� � � �

� �

1 2 3 4

5

(8.1)

which, for brevity of expression, we write as:

Yi �BX + ui (8.2)

where BX is the right-hand side of Eq. (8.1).

Model (8.2) is called a linear probability model (LPM) because the conditional ex-

pectation of the depending variable (smoking status), given the values of the explana-

tory variables, can be interpreted as the conditional probability that the event (i.e.

smoking) will occur.2

Using Eviews, we obtained the results in Table 8.2. Let us examine the results in this

table.

Notice that all the variables, except income, are individually statistically significant

at least at the 10% level of significance.

Age, education, and price of cigarettes have negative impact on smoking, which

may not be a surprising result. Collectively all the explanatory variables are statistically

significant, for the estimated F value of �12.00 has a p value of almost zero. Recall that

the F value tests the hypothesis that all the slope coefficients are simultaneously equal

to zero.
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Dependent Variable: SMOKER
Method: Least Squares
Date: 12/06/08 Time: 21:54
Sample: 1 1196
Included observations: 1196

Coefficient Std. Error t-Statistic Prob.

C 1.123089 0.188356 5.962575 0.0000

AGE –0.004726 0.000829 –5.700952 0.0000

EDUC –0.020613 0.004616 –4.465272 0.0000

INCOME 1.03E–06 1.63E–06 0.628522 0.5298

PCIGS79 –0.005132 0.002852 –1.799076 0.0723

R-squared 0.038770 Mean dependent var 0.380435
Adjusted R-squared 0.035541 S.D. dependent var 0.485697
S.E. of regression 0.476988 Akaike info criterion 1.361519
Sum squared resid 270.9729 Schwarz criterion 1.382785
Log likelihood –809.1885 Durbin–Watson stat 1.943548
F-statistic 12.00927 Prob(F-statistic) 0.000000

Table 8.2 LPM model of to smoke or not to smoke.

2 If Pi = Pr(Yi = 1) and (1 – Pi) = Pr(Yi = 0), then the expected value of Yi = E(Yi) =1.Pi +0.(1 – Pi) = Pi.



Since we have estimated a linear probability model, the interpretation of the regres-

sion coefficients is as follows. If we hold all other variables constant, the probability of

smoking decreases at the rate of �0.005 as a person ages, probably due to the adverse

impact of smoking on health. Likewise, ceteris paribus, an increase in schooling by one

year decreases the probability of smoking by 0.02. Similarly, if the price of cigarettes

goes up by a dollar, the probability of smoking decreases by �0.005, holding all other

variables constant. The R2 value of �0.038 seems very low, but one should not attach

much importance to this because the dependent variable is nominal, taking only

values of 1 and zero.

We can refine this model by introducing interaction terms, such as age multiplied

by education, or education multiplied by income, or introduce a squared term in edu-

cation or squared term in age to find out if there is nonlinear impact of these variables

on smoking. But there is no point in doing that, because the LPM has several inherent

limitations.

First, the LPM assumes that the probability of smoking moves linearly with the

value of the explanatory variable, no matter how small or large that value is. Secondly,

by logic, the probability value must lie between 0 and 1. But there is no guarantee that

the estimated probability values from the LPM will lie within these limits. This is be-

cause OLS does not take into account the restriction that the estimated probabilities

must lie within the bounds of 0 and 1. Thirdly, the usual assumption that the error

term is normally distributed cannot hold when the dependent variable takes only

values of 0 and 1. Finally, the error term in the LPM is heteroscedastic, making the

traditional significance tests suspect.

For all these reasons, LPM is not the preferred choice for modeling dichotomous

variables. The alternatives discussed in the literature are logit and probit.

8.3 The logit model

In our smoker example our primary objective is to estimate the probability of smoking,

given the values of the explanatory variables. In developing such a probability func-

tion, we need to keep in mind two requirements: (1) that as Xi, the value of the explana-

tory variable(s) changes, the estimated probability always lies in the 0–1 interval, and

(2) that the relationship between Pi and Xi is nonlinear, that is, “one which approaches

zero at slower and slower rates as Xi gets small and approaches one at slower and

slower rates as Xi gets very large”.3 The logit and probit models satisfy these require-

ments. We first consider the logit model because of its comparative mathematical

simplicity.

Assume that in our example the decision of an individual to smoke or not to smoke

depends on an unobservable utility index Ii
*, which depends on explanatory variables

such as age, education, family income and price of cigarettes.4 We express this index

as:

I BX ui i
* � � (8.3)

where i = ith individual, u = error term, and BX is as defined in Eq. (8.2).
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3 John H. Aldrich and Forrest Nelson, Linear Probability, Logit and Probit Models, Sage Publications,

1984, p. 26.

4 The utility index is also known as a latent variable.



But how is the unobservable index related to the actual decision of smoking or not

smoking? It is reasonable to assume that:

Yi = 1 (a person smokes) if Ii
* � 0

Yi = 0 (a person does not smoke) if Ii
* � 0

That is, if a person’s utility index I exceeds the threshold level I*, he or she will smoke

but if it is less that I*, that individual will not smoke. Note that we are not suggesting

that smoking is good or bad for health, although there is extensive medical research

that suggests that smoking probably is bad for health.

To make this choice operational, we can think in terms of the probability of making

a choice, say the choice of smoking (i.e. Y = 1):

Pr( ) Pr( )

Pr[( ) ]

Pr( )

*Y I

BX u

u BX

i

i

i

� � �

� � �

� � �

1 0

0 (8.4)

Now this probability depends on the (probability) distribution of Yi, which in turn

depends on the probability distribution of the error term, ui.
5 If this probability distri-

bution is symmetric around its (zero) mean value, then Eq. (8.4) can be written as:

Pr( ) Pr( )u BX u BXi i� � � � (8.5)

Therefore,

P Y u BXi i i� � � �Pr Pr( ) ( )1 (8.6)

Obviously Pi depends on the particular probability distribution of ui. Remember

that the probability that a random variable takes a value less than some specified value

is given by the cumulative distribution function (CDF) of that variable.6

The logit model assumes that the probability distribution of ui follows the logistic

probability distribution, which for our example can be written as:

Pi Zi
�

� �
1

1 e
(8.7)

where Pi = probability of smoking (i.e. Yi = 1) and

Z BX ui i� � (8.8)

The probability that Y = 0, that is, the person is not a smoker, is given by

1
1

1
� �

�
Pi Zie

(8.9)

Note: The signs of Zi in Eqs. (8.7) and (8.9) are different.
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5 Note that B is fixed or nonrandom and X values are given. Therefore, the variation in Yi comes from the

variation in ui.

6 Recall from elementary statistics that the cumulative distribution function of a random variable X, F(X),

is defined as:F X X x( ) Pr( )� � , where x is a particular value of X. Also recall that if you plot CDF, it resembles

an elongated S.



It can be easily verified that as Zi ranges from �� to ��, Pi ranges between 0 and 1

and that Pi is nonlinearly related to Zi (i.e. Xi), thus satisfying the requirements dis-

cussed earlier.7

How do we estimate model (8.7), for it is nonlinear not only in X but also in the pa-

rameters, Bs? We can use a simple transformation to make the model linear in the Xs

and the coefficients. Taking the ratio of Eqs. (8.7) and (8.9), that is the probability that a

person is a smoker against the probability that he/she is not, we obtain:

P

P

i

i

Z

Z
Z

i

i

i

1

1

1�
�

�
�

�
�

e

e
e (8.10)

Now P Pi i/( )1� is simply the odds ratio in favor of smoking – the ratio of the proba-

bility that a person is a smoker to the probability that he or she is not a smoker.

Taking the (natural) log of Eq. (8.10), we obtain a very interesting result, namely:

L
P

P
Z BX ui

i

i
i i i�

�

�

 
!!

"

#
$$ � � �ln

1
(8.11)

In words, Eq. (8.11) states that the log of the odds ratio is a linear function of the Bs as

well as the Xs. Li is know as the logit (log of the odds ratio) and hence the name logit

model for models like (8.11). It is interesting to observe that the linear probability

model (LPM) discussed previously assumes that Pi is linearly related to Xi, whereas the

logit model assumes that the log of the odds ratio is linearly related to Xi.

Some of the features of the logit model are as follows:

1 As Pi, the probability goes from 0 to 1, the logit Li goes from �� to ��. That is, al-

though the probabilities lie between 0 and 1, the logits are unbounded.

2 Although Li is linear in Xi, the probabilities themselves are not. This is contrast to

with the LPM where the probabilities increase linearly with Xi.

3 If Li, the logit, is positive, it means that when the value of the explanatory vari-

able(s) increases, the odds of smoking increases, whereas it if is negative, the odds

of smoking decreases.

4 The interpretation of the logit model in (8.11) is as follows: each slope coefficient

shows how the log of the odds in favor of smoking changes as the value of the X

variable changes by a unit.

5 Once the coefficients of the logit model are estimated, we can easily compute the

probabilities of smoking, not just the odds of smoking, from (8.7).

6 In the LPM the slope coefficient measures the marginal effect of a unit change in

the explanatory variable on the probability of smoking, holding other variables

constant. This is not the case with the logit model, for the marginal effect of a unit

change in the explanatory variable not only depends on the coefficient of that vari-

able but also on the level of probability from which the change is measured. But

the latter depends on the values of all the explanatory variables in the model.8
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7 The reason why Pi is nonlinearly related to, say, income is that as income increases smokers will

increase their consumption of cigarettes at a decreasing rate because of the law of diminishing returns. This

is true of almost all normal commodities.

8 Calculus-minded readers can verify this if they take the (partial) derivative of Eq. (8.7) with respect to

the relevant variables, noting that Zi =BX. Note: use the chain rule: � � � � � � � �P X P Z Z Xi i i i i i/ / / .



However, statistical packages such as Eviews and Stata can compute the marginal

effects with simple instructions.

Now the question is: how do we estimate the parameters of the logit model?

Estimation of the logit model

Estimation of the logit model depends on the type of data available for analysis. There

are two types of data available: data at the individual, or micro, level, as in the case of

the smoker example, and data at the group level. We will first consider the case of indi-

vidual level data.

Individual level data
For our smoker example, we have data on 1,196 individuals. Therefore, although the

logit model is linear, it cannot be estimated by the usual OLS method. To see why, note

that Pi = 1 if a person smokes, and Pi = 0 if a person does not smoke. But if we put these

values directly in the logit Li, we obtain expressions like Li � ln( / )1 0 if a person smokes

and Li � ln( / )0 1 if a person does not smoke. These are undefined expressions. There-

fore, to estimate the logit model we have to resort to alternative estimation methods.

The most popular method with attractive statistical properties is the method of maxi-

mum likelihood (ML). We briefly discussed this method in Chapter 1, but further de-

tails of ML can be found in the references.9 Most modern statistical packages have

established routines to estimate parameters by the ML method.

We will first present the results of ML estimation for the smoker example, which

are obtained from Eviews (Table 8.3).
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Dependent Variable: SMOKER
Method: ML – Binary Logit (Quadratic hill climbing)
Sample: 1 1196
Included observations: 1196
Convergence achieved after 3 iterations
QML (Huber/White) standard errors & covariance

Coefficient Std. Error z-Statistic Prob.

C 2.745077 0.821765 3.340462 0.0008

AGE –0.020853 0.003613 –5.772382 0.0000

EDUC –0.090973 0.020548 –4.427431 0.0000

INCOME 4.72E–06 7.27E–06 0.649033 0.5163

PCIGS79 –0.022319 0.012388 –1.801626 0.0716

McFadden R-squared 0.029748 Mean dependent var 0.380435
S.D. dependent var 0.485697 S.E. of regression 0.477407
Akaike info criterion 1.297393 Sum squared resid 271.4495
Schwarz criterion 1.318658 Log likelihood –770.8409
LR statistic 47.26785 Restr. log likelihood –794.4748
Prob(LR statistic) 0.000000 Avg. log likelihood –0.644516
Obs with Dep=0 741 Total obs 1196
Obs with Dep=1 455

Table 8.3 Logit model of to smoke or not to smoke.

9 For an accessible discussion of ML, see Gujarati/Porter, op cit.



Let us examine these results. The variables age and education are highly statistically

significant and have the expected signs. As age increases, the value of the logit de-

creases, perhaps due to health concerns – that is, as people age, they are less likely to

smoke. Likewise, more educated people are less likely to smoke, perhaps due to the ill

effects of smoking. The price of cigarettes has the expected negative sign and is signifi-

cant at about the 7% level. Ceteris paribus, the higher the price of cigarettes, the lower

is the probability of smoking. Income has no statistically visible impact on smoking,

perhaps because expenditure on cigarettes may be a small proportion of family

income.

The interpretation of the various coefficients is as follows: holding other variables

constant, if, for example, education increases by one year, the average logit value goes

down by � 0 09. , that is, the log of odds in favor of smoking goes down by about 0.09.

Other coefficients are interpreted similarly.

But the logit language is not everyday language. What we would like to know is the

probability of smoking, given values of the explanatory variables. But this can be com-

puted from Eq. (8.7). To illustrate, take smoker #2 from Table 8.1 also. His data are as

follows: age = 28, educ = 15, income = 12,500 and pcigs79 = 60.0. Inserting these values

in Eq. (8.7), we obtain:

P �
�

�
� �

1

1
03782

0 4935e ( . )
.

That is, the probability that a person with the given characteristics is a smoker is about

38%. From our data we know that this person is a smoker.

Now take a person with age, educ, income, and pcigs79 of 63, 10, 20,000, and 60.8,

respectively. For this person, the probability of smoking is

P �
�

�
� �

1

1
03227

0 7362e ( . )
.

That is, the probability of this person being a smoker is 32%. In our sample such a

person is nonsmoker.

Table 8.1 gives the probability of smoking for each person along with the raw data.

Can we compute the marginal effect of an explanatory variable on the probability of

smoking, holding all other variables constant? Suppose we want to find out � �P Agei i/ ,

the effect of a unit change in age on the probability of smoking, holding other variables

constant. This was very straightforward in the LPM, but it is not that simple with logit

or probit models. This is because the change in probability of smoking if age changes

by a unit (say, a year) depends not only on the coefficient of the age variable but also on

the level of probability from which the change is measured. But the latter depends on

values of all the explanatory variables. For details of these computations the reader is

referred to the references, although Eviews and Stata can do this job readily.10

The conventional measure of goodness of fit, R2, is not very meaningful when the

dependent variable takes values of 1 or 0. Measures similar to R2, called pseudo R2, are

discussed in the literature. One such measure is the McFadden R2, called R2
McF. Like

R2, R2
McF lies between 0 and 1. For our example, its value is 0.0927.

Another goodness of fit measure is the count R2, which is defined as
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10 See, for instance, Gujarati/Porter, op cit.



Count
number of correct predictions

totalnumber of obs
R2 �

ervations
(8.12)

Since the dependent variable takes a value of 1 or 0, if the predicted probability for

an observation is greater than 0.5 we classify that observation as 1, but if is less than 0.5,

we classify that as 0. We then count the number of correct predictions and the count

R2 as defined above (see Exercise 8.3).

It should be emphasized that in binary regression models goodness of fit measures

are of secondary importance. What matters are the expected signs of the regression

coefficients and their statistical and or practical significance. From Table 8.3 we can

see that except for the income coefficient, all other coefficients are individually statis-

tically significant, at least at the 10% level. We can also test the null hypothesis that all

the coefficients are simultaneously zero with the likelihood ratio (LR) statistic, which

is the equivalent of the F test in the linear regression model.11 Under the null hypothe-

sis that none of the regressors are significant, the LR statistic follows the chi-square

distribution with df equal to the number of explanatory variables: four in our example.

As Table 8.3 shows, the value of the LR statistic is about 47.26 and the p value (i.e.

the exact significance level) is practically zero, thus refuting the null hypothesis.

Therefore we can say that the four variables included in the logit model are important

determinants of smoking habits.

� Technical Note 1: Table 8.3 gives two log likelihood statistics – unrestricted likeli-

hood (= –770.84) and restricted likelihood (–794.47). The latter is obtained by as-

suming that there are no regressors in the model, only the intercept term, whereas

the unrestricted likelihood is the value obtained with all the regressors (including

the intercept) in the model. The likelihood ratio statistic (=�) of about 47.27 shown

in Table 8.3 is computed from the formula given in the Appendix to Chapter 1. For

our example, the computed likelihood ratio of 47.27 is highly significant, for its p

value is practically zero.12 This is to say that it is the unrestricted model that in-

cludes all the regressors is appropriate in the present instance. To put it differently,

the restricted model is not valid in the present case.

� Technical Note 2: Note that the Huber/White standard errors reported in Table

8.3 are not necessarily robust to heteroscedasticity but are robust to certain

misspecification of the underlying probability distribution of the dependent

variable.

Model refinement

The logit model given in Table 8.3 can be refined. For example, we can allow for the in-

teraction effect between the explanatory variables. Individually education has negative

impact and income has positive impact on the probability of smoking, although the

latter effect is not statistically significant. But what is the combined influence of educa-

tion and income on the probability of smoking? Do people with a higher level of
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11 In the maximum likelihood Appendix to Chapter 1 we have discussed why we use the LR statistic.

12 As noted in the Appendix to Chapter 1, under the null hypothesis that the coefficients of all regressors

in the model are zero, the LR statistic follows the chi-square distribution with df equal to the number of

regressors (excluding the intercept), 4 in our example.



education and higher level of income smoke less or more than people with other

characteristics?

To allow for this, we can introduce the multiplicative or interactive effect of the two

variables as an additional explanatory variable. The results are given in Table 8.4.

These results are interesting. In Table 8.3 individually education had a significant

negative impact on the logit (and therefore on the probability of smoking) and income

had no statistically significant impact. Now education by itself has no statistically sig-

nificant impact on the logit, but income has highly significant positive impact. But if

you consider the interactive term, education multiplied by income, it has significant

negative impact on the logit. That is, persons with higher education who also have

higher incomes are less likely to be smokers than those who are more educated only or

have higher incomes only. What this suggests is that the impact of one variable on the

probability of smoking may be attenuated or reinforced by the presence of other

variable(s).

The reader is encouraged to see if there are any other interactions among the ex-

planatory variables.

Logit estimation for grouped data

Suppose we group the smoker data into 20 groups of approximately 60 observations

each. For each group we find out the number of smokers, say ni. We divide ni by 60 to

get an estimate of the (empirical) probability of smokers for that group, say, pi. There-

fore, we have 20 estimated pis. We can then use these probabilities to estimate the logit

regression Eq. (8.11) by OLS.
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Dependent Variable: SMOKER
Method: ML – Binary Logit (Quadratic hill climbing)
Sample: 1 1196
Included observations: 1196
Convergence achieved after 10 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C 1.093186 0.955676 1.143887 0.2527

AGE –0.018254 0.003794 –4.811285 0.0000

EDUC 0.039456 0.042511 0.928140 0.3533

INCOME 9.50E–05 2.69E–05 3.535155 0.0004

PCIGS79 –0.021707 0.012530 –1.732484 0.0832

EDUC*INCO
ME

–7.45E–06 2.13E–06 –3.489706 0.0005

McFadden R-squared 0.037738 Mean dependent var 0.380435
S.D. dependent var 0.485697 S.E. of regression 0.475290
Akaike info criterion 1.288449 Sum squared resid 268.8219
Schwarz criterion 1.313968 Log likelihood –764.4926
LR statistic 59.96443 Restr. log likelihood –794.4748
Prob(LR statistic) 0.000000 Avg. log likelihood –0.639208
Obs with Dep=0 741 Total obs 1196
Obs with Dep=1 455

Table 8.4 The logit model of smoking with interaction.



Unless the data are already available in grouped form, forming groups in the

manner suggested in the preceding paragraph has problems. First, we have to decide

how many groups to form. If we form too few groups, we will have very few pi to esti-

mate Eq. (8.11). On the other hand, if we form too many groups, we will have only a few

observations in each group, which might make it difficult to estimate the pis

efficiently.

Second, even if we have the “right” number of groups, one problem with the

grouped logit estimation is that the error term in Eq. (8.11) is heteroscedastic. So we

will have to take care of heteroscedasticity by suitable transformation or use White’s

robust standard errors, a topic discussed in Chapter 5.

We will not illustrate the grouped logit estimation with the smoker data for the rea-

sons discussed above. Besides, we have data at the micro-level and we can use the ML

method to estimate the logit model, as we have shown earlier (but see Exercise 8.4).

8.4 The probit model

In the LPM the error term has non-normal distribution; in the logit model the error

term has the logistic distribution. Another rival model is the probit model, in which

the error term has the normal distribution. Given the assumption of normality, the

probability that Ii
* is less than or equal to Ii can be computed from the standard

normal cumulative distribution function (CDF)13 as:

P Y X I I Z BX F BXi i i i� � � � � � �Pr Pr Pr( | ) ( ) ( ) ( )*1 (8.13)

where Pr(Y|X) means the probability that an event occurs (i.e. smoking) given the

values of the X variables and where Z is the standard normal variable (i.e. a normal

variable with zero mean and unit variance). F is the standard normal CDF, which in the

present context can be written as:

F BX zz
BX

( ) /� �
��(

1

2

2 2

�
e d (8.14)

Since P represents the probability that a person smokes, it is measured by the area of

the standard CDF curve from �� to Ii. In the present context, F(Ii) is called the probit

function.

Although the estimation of the utility index BX and the Bs is rather complicated in

the probit model, the method of maximum likelihood can be used to estimate them.

For our example, the ML estimates of the probit model are given in Table 8.5.

Although the numerical values of the logit and probit coefficients are different,

qualitatively the results are similar: the coefficients of age, education, and price of ciga-

rettes are individually significant at least at the 10% level. The income coefficient,

however, is not significant.

There is a way of comparing the logit and probit coefficients. Although the stan-

dard logistic distribution (the basis of the logit) and the standard normal distribution

(the basis of probit) both have a mean value of zero, their variances are different: 1 for
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13 If a variable X follows the normal distribution with mean � and variance 
2, its probability density

function (PDF) is f X X( ) ( / ) ( ) /� � �1 2
2 22
 � � 
e and its cumulative distribution function (CDF) is

F X XX
X

( ) ( ) /
0

22
2 20

� � �
��( (1/ )e d
 � � 
 , where X0 is a specified value of X. If � � 0 and 
2 1� , the resulting

PDF and CDF represent the standard normal PDF and CDF, respectively.



the standard normal distribution and �2 3/ for the logistic distribution, where

� �22 7/ , which is about 3.14. Therefore, if we multiply the probit coefficient by about

1.81 (� �/ 3), you will get approximately the logit coefficient. For example, the probit

coefficient of age is –0.0235. If you multiply this coefficient by 1.81, you will get � –

0.0233, which is directly comparable to the age coefficient in the logit model given in

Table 8.3.

How do we interpret the coefficients of the probit model given in Table 8.5? For ex-

ample, what is the marginal effect on the probability of smoking if age increases by a

year, holding other variables constant? This marginal effect is given by the coefficient

of the age variable, –0.0130, multiplied by the value of the normal density function

evaluated for all the X values for that individual.

To illustrate, consider the data for smoker number 1 in our sample, which are: age =

21, education = 12, income = 8,500, and pcigs 60.6. Putting these values in the standard

normal density function given in footnote 13, we obtain: f(BX) = 0.3983. Multiplying

this by –0.0130, we obtain –0.0051. This means that with the given values of the X vari-

ables the probability that someone smokes decreases by about 0.005 if age increases by

a year. Recall that we had a similar situation in computing the marginal effect of an ex-

planatory variable on the probability of smoking in the logit model.

As you can see, computing the marginal effect of an explanatory variable on the

probability of smoking of an individual in this fashion is a tedious job, although the

Stata and Eviews statistical packages can do this job relatively quickly.

Incidentally, the probit estimates of the interaction effect as in the logit model are as

shown in Table 8.6.
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Dependent Variable: SMOKER
Method: ML – Binary Probit (Quadratic hill climbing)
Sample: 1 1196
Included observations: 1196
Convergence achieved after 6 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C 1.701906 0.510575 3.333315 0.0009

AGE –0.012965 0.002293 –5.655439 0.0000

EDUC –0.056230 0.012635 –4.450266 0.0000

INCOME 2.72E–06 4.40E–06 0.618642 0.5362

PCIGS79 –0.013794 0.007696 –1.792325 0.0731

McFadden R-squared 0.030066 Mean dependent var 0.380435
S.D. dependent var 0.485697 S.E. of regression 0.477328
Akaike info criterion 1.296970 Sum squared resid 271.3598
Schwarz criterion 1.318236 Log likelihood –770.5881
LR statistic 47.77335 Restr. log likelihood –794.4748
Prob(LR statistic) 0.000000 Avg. log likelihood –0.644304
Obs with Dep=0 741 Total obs 1196
Obs with Dep=1 455

Table 8.5 Probit model of smoking.



As you can see, the results in Tables 8.4 and 8.6 are quite similar. But you will have

to use the conversion factor of about 1.81 to make the probit coefficients directly com-

parable with the logit coefficients.14

In passing it may be noted that we can also estimate the probit model for grouped data,

called grouped probit, similar to the grouped logit model. But we will not pursue it here.

Logit vs. probit

Logit and probit models generally give similar results; the main difference between the

two models is that the logistic distribution has slightly fatter tails; recall that the vari-

ance of a logistically distributed random variable is about �2 3/ , whereas that of a

(standard) normally distributed variable it is 1. That is to say, the conditional probabil-

ity Pi approaches 0 or 1 at a slower rate in logit than in probit. But in practice there is no

compelling reason to choose one over the other. Many researchers choose the logit

over the probit because of its comparative mathematical simplicity.

8.5 Summary and conclusions

In this chapter we discussed the simplest possible qualitative response regression

model in which the dependent variable is binary, taking the value of 1 if an attribute is

present and the value of 0 if that attribute is absent.
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Dependent Variable: SMOKER
Method: ML – Binary Probit (Quadratic hill climbing)
Sample: 1 1196
Included observations: 1196
Convergence achieved after 10 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C 0.682050 0.587298 1.161336 0.2455

AGE –0.011382 0.002332 –4.880864 0.0000

EDUC 0.024201 0.025962 0.932180 0.3512

INCOME 5.80E–05 1.62E–05 3.588406 0.0003

PCIGS79 –0.013438 0.007723 –1.739941 0.0819

EDUC*INCO
ME

–4.55E–06 1.28E–06 –3.551323 0.0004

McFadden R-squared 0.038139 Mean dependent var 0.380435
S.D. dependent var 0.485697 S.E. of regression 0.475190
Akaike info criterion 1.287917 Sum squared resid 268.7082
Schwarz criterion 1.313436 Log likelihood –764.1745
Hannan–Quinn criter. 1.297531 Restr. log likelihood –794.4748
LR statistic 60.60065 Avg. log likelihood –0.638942
Prob(LR statistic) 0.000000
Obs with Dep=0 741 Total obs 1196
Obs with Dep=1 455

Table 8.6 The probit model of smoking with interaction.

14 A similar conversion factor for comparing LPM and logit models is given in Exercise 8.1.



Although binary dependent variable models can be estimated by OLS, in which case

they are known as linear probability models (LPM), OLS is not the preferred method

of estimation for such models because of two limitations, namely, that the estimated

probabilities from LPM do not necessarily lie in the bounds of 0 and 1 and also because

LPM assumes that the probability of a positive response increases linearly with the

level of the explanatory variable, which is counterintuitive. One would expect the rate

of increase in probability to taper off after some point.

Binary response regression models can be estimated by the logit or probit models.

The logit model uses the logistic probability distribution to estimate the parameters

of the model. Although seemingly nonlinear, the log of the odds ratio, called the logit,

makes the logit model linear in the parameters.

If we have grouped data, we can estimate the logit model by OLS. But if we have

micro-level data, we have to use the method of maximum likelihood. In the former

case we will have to correct for heteroscedasticity in the error term.

Unlike the LPM, the marginal effect of a regressor in the logit model depends not

only on the coefficient of that regressor but also on the values of all regressors in the

model.

An alternative to logit is the probit model. The underlying probability distribution

of probit is the normal distribution. The parameters of the probit model are usually es-

timated by the method of maximum likelihood.

Like the logit model, the marginal effect of a regressor in the probit model involves

all the regressors in the model.

The logit and probit coefficients cannot be compared directly. But if you multiply

the probit coefficients by 1.81, they are then comparable with the logit coefficients.

This conversion is necessary because the underlying variances of the logistic and

normal distribution are different.

In practice, the logit and probit models give similar results. The choice between

them depends on the availability of software and the ease of interpretation.

Exercises

8.1 To study the effectiveness of price discount on a six-pack of soft drink, a sample

of 5,500 consumers was randomly assigned to 11 discount categories as shown in

Table 8.7.15

(a) Treating the redemption rate as the dependent variable and price discount

as the regressor, see whether the logit model fits the data.16

(b) See whether the probit model does as well as the logit model.

(c) Fit the LPM model to these data.

(d) Compare the results of the three models. Note that the coefficients of LPM

and Logit models are related as follows:

Slope coefficient of LPM = 0.25* Slope coefficient of Logit

Intercept of LPM = 0.25* slope coefficient of Logit + 0.5.

164 Regression models with cross-sectional data

15 The data are obtained from Douglas Montgomery and Elizabeth Peck from their book, Introduction to

Linear Regression Analysis, John Wiley & Sons, New York, 1982, p. 243 (notation changed).

16 The redemption rate is the number of coupons redeemed divided by the number of observations in

each price discount category.



8.2 Table 8.8 (available on the companion website) gives data on 78 homebuyers on

their choice between adjustable and fixed rate mortgages and related data bearing on

the choice.17

The variables are defined as follows:

Adjust = 1 if an adjustable mortgage is chosen, 0 otherwise.

Fixed rate = fixed interest rate

Margin = (variable rate – fixed rate)

Yield = the 10-year Treasury rate less 1-year rate

Points = ratio of points on adjustable mortgage to those paid on a fixed rate

mortgage

Networth = borrower’s net worth

(a) Estimate an LPM of adjustable rate mortgage choice.

(b) Estimate the adjustable rate mortgage choice using logit.

(c) Repeat (b) using the probit model.

(d) Compare the performance of the three models and decide which is a better

model.

(e) Calculate the marginal impact of Margin on the probability of choosing the

adjustable rate mortgage for the three models.

8.3 For the smoker data discussed in the chapter, estimate the count R2.

8.4 Divide the smoker data into 20 groups. For each group compute pi, the probabil-

ity of smoking. For each group compute the average values of the regressors and esti-

mate the grouped logit model using these average values. Compare your results with

the ML estimates of smoker logit discussed in the chapter. How would you obtain the

heteroscedasticity-corrected standard errors for the grouped logit?
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Price Discount (cents) Sample size Number of coupons
redeemed

5 500 100

7 500 122

9 500 147

11 500 176

13 500 211

15 500 244

17 500 277

19 500 310

21 500 343

23 500 372

25 500 391

Table 8.7 The number of coupons redeemed and the price discount.

17 These data are obtained from the website of R. Carter Hill, William E. Griffiths and Guay C. Lim,

Principles of Econometrics, 3rd edn, John Wiley & Sons, 2008.



9
Multinomial regression models

In Chapter 8 we considered the logit and probit models in which the objective was to

choose between two discrete choices: to smoke or not to smoke. Such models are

called dichotomous or binary regression models. But there are many occasions where

we may have to choose among several discrete alternatives. Such models are called

multinomial regression models (MRM). Some examples are:

1 Transportation choices: car, bus, railroad, bicycle

2 Choice of cereal brands

3 Choice of Presidential candidate: Democrat, Republican, or Independent

4 Choice of education: high school, college, postgraduate

5 Choice of MBA School: Harvard, MIT, Chicago, Stanford

6 Choice of job: do not work, work part time, or work full time.

7 Buying a car: American, Japanese, European

Of course, many more examples can be cited in which a consumer is faced with sev-

eral choices.

How do we estimate models that involve choosing among several alternatives? In

what follows we will consider some of the techniques that are commonly used in prac-

tice. But before we proceed, it may be noted that there are several names for such

models: polytomous or polychotomous (multiple category) regression models. For

discussion purposes we will use the term multinomial models for all these models.

9.1 The nature of multinomial regression models

At the outset we can distinguish between nominal or unordered MRM and ordered

MRM. For example, the transportation choice is nominal MRM because there is no

particular (natural) order among the various options. On the other hand, if one is re-

sponding to a questionnaire which makes a statement and asks you to respond on a

three-response scale, such as do not agree, somewhat agree, completely agree, it is an

example of an ordered MRM.

In this chapter we consider the nominal MRMs and discuss ordered MRMs in the

next chapter.

Even within the nominal MRMs we have to distinguish three cases:

1 Nominal MRM for chooser-specific data

2 Nominal MRM for choice-specific data
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3 Nominal MRM for chooser-specific and choice-specific data, or mixed nominal

MRM

Note that we are using the term “chooser” to represent an individual or decision

maker who has to choose among several alternatives. We use the term “choice” to rep-

resent the alternatives or options that face an individual. The context of the problem

will make clear which term we have in mind.

Nominal MRM for chooser or individual-specific data

In this model the choices depend on the characteristics of the chooser, such as age,

income, education, religion, and similar factors. For example, in educational choices,

such as secondary education, a two-year college education, a four-year college educa-

tion and graduate school, age, family income, religion, and parents’ education are

some of the variables that will affect the choice. These variables are specific to the

chooser.

These types of model are usually estimated by multinomial logit (MLM) or

multinomial probit models (MPM).1 The primary question these models answer is:

How do the choosers’ characteristics affect their choosing a particular alternative

among a set of alternatives? Therefore MLM is suitable when regressors vary across

individuals.

Nominal MRM for choice-specific data

Suppose we have to choose among four types of cracker: Private label, Sunshine,

Keebler, and Nabisco. We have data on the prices of these crackers, the displays used

by these brands and the special features used by these brands. In other words, we have

choice-specific characteristics. However, in this model we do not have individual-spe-

cific characteristics. Such models are usually estimated by conditional logit (CLM) or

conditional probit (CPM) models. The main questions such models answer is: how

do the characteristics or features of various alternatives affect individuals’ choice

among them? For example, do people buy cars based on features, such as color, shape,

commercial advertising, and promotional features? Therefore, CLM or CPM is appro-

priate when regressors vary across alternatives.

The difference between MLM and CLM has been well summarized by Powers and

Xie as follows:2

In the standard multinomial logit model, explanatory variables are invariant with

outcome categories, but their parameters vary with the outcome. In the conditional

logit model, explanatory variables vary by outcome as well as by the individual,

whereas their parameters are assumed constant over all outcome categories.

Mixed MRM

Here we have data on both chooser-specific and choice-specific characteristics. Such

models can also be estimated by the conditional logit model by adding appropriate
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1 Because of their comparative mathematical complexity, in practice MLM are more frequently used

than the MPM. Therefore, we will confine our discussion largely to MLM.

2 See Daniel A. Powers and Yu Xie, Statistical Methods for Categorical Data Analysis, 2d ed., Emerald

Publishers, UK, 2008, p. 256.



dummy variables. For example, in choosing cars, features of the cars as well as the

income and age of individuals may affect their choice of car.

Since the topic of multi-choice models is vast, we will only consider the basic essen-

tials of MLM, CLM and MXL (mixed logit model) and refer the reader to references

for additional discussion of these models.3

9.2 Multinomial logit model (MLM): school choice

To illustrate MLM, we consider an example about school choice. The data consists of

1,000 secondary school graduates who are facing three choices: no college, a 2-year

college, and a 4-year college, which choices we code as 1, 2, and 3.4 Note that we are

treating these as nominal variables, although we could have treated them as ordered.

See Table 9.1 on the companion website.

How does a high school graduate decide among these choices? Intuitively, we could

say that the choice will depend on the satisfaction (or utility in economist’s jargon) that

a student gets from higher education. He or she will choose the alternative that gives

him or her the highest possible satisfaction. That choice, therefore, will have the high-

est probability of being chosen.

To see how this can be done, let

Yij = 1, if the individual i chooses alternative j (j = 1, 2 and 3 in the

present case)

= 0, otherwise

Further, let

�ij ijY� �Pr( )1

where Pr stands for probability.

Therefore, � � �i i i1 2 3, , represent the probabilities that individual i chooses alter-

native 1, 2, or 3, respectively – that is alternatives of no college, a 2-year college and a

4-year college. If these are the only alternatives an individual faces, then, obviously,

� � �i i i1 2 3 1� � � (9.1)

This is because the sum of the probabilities of mutually exclusive and exhaustive

events must be 1. We will call the �s the response probabilities.

This means that in our example if we determine any two probabilities, the third one

is determined automatically. In other words, we cannot estimate the three probabili-

ties independently.

Now what are the factors or variables that determine the probability of choosing a

particular option? In our school choice example we have information on the following

variables:
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3 For a comprehensive discussion with several examples, see J. Scott Long and Jeremy Freese, Regression

Models for Categorical Dependent Variables Using Stata, Stata Press, 2nd edn, Stata Corporation LP,

College Station, Texas and William H. Greene, Econometric Analysis, 6th ed., Pearson/Prentice-Hall, New

Jersey, 2008, Ch. 23.

4 The data are originally from the National Education Longitudinal Study of 1988 and are reproduced in

R. Carter Hill, William E. Griffiths, and Guay C. Lim, Principles of Econometrics, 3rd edn, John Wiley & Sons,

New York, 2008.



X2 = hscath = 1 if Catholic school graduate, 0 otherwise

X3 = grades = average grade in math, English, and social studies on a 13 point grad-

ing scale, with 1 for the highest grade and 13 for the lowest grade. Therefore, higher

grade-point denotes poor academic performance

X4 = faminc = gross family income in 1991 in thousands of dollars

X5 = famsiz =number of family members

X6 = parcoll= 1 if the most educated parent graduated from college or had an ad-

vanced degree

X7 = 1 if female

X8 = 1 if black

We will use X1 to represent the intercept.

Notice some of the variables are qualitative or dummy (X2, X6, X7, X8) and some are

quantitative (X3, X4, X5). Also note that there will be some random factors that will

also affect the choice, and these random factors will be denoted by the error term in es-

timating the model.

Generalizing the bivariate logit model discussed in Chapter 8, we can write the

multinomial logit model (MLM) as:

�
� )

� )ij

X

j
X

j j i

j j i

�
�

�
�

e

e� 1
3

(9.2)

Notice that we have put the subscript j on the intercept and the slope coefficient to

remind us that the values of these coefficients can differ from choice to choice. In

other words, a high school graduate who does not want to go to college will attach a

different weight to each explanatory variable than a high school graduate who wants to

go to a 2-year college or a 4-year college. Likewise, a high school graduate who wants to

go to a 2-year college but not to a 4-year college will attach different weights (or impor-

tance if you will) to the various explanatory variables.

Also, keep in mind that if we have more than one explanatory variable in the model,

X will then represent a vector of variables and then)will be a vector of coefficients. So,

if we decide to include the seven explanatory variables listed above, we will have seven

slope coefficients and these slope coefficients may differ from choice to choice. In

other words, the three probabilities estimated from Eq. (9.2) may have different coeffi-

cients for the regressors. In effect, we are estimating three regressions.

As we noted before, we cannot estimate all the three probabilities independently.

The common practice in MLM is to choose one category or choice as the base, refer-

ence or comparison category and set its coefficient values to zero. So if we choose the

first category (no college) and set �1 0� and)1 0� , we obtain the following estimates

of the probabilities for the three choices:

�
� ) � )i X Xi i

1
1

1 2 2 3 3

�
� �� �e e

(9.3)
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(9.4)

Multinomial regression models 169

III



�
� )

� ) � )i

X

X X

i

i i
3

3 3

2 2 3 31
�

� �

�

� �

e

e e
(9.5)

It should be noted that although the same regressors appear in each (response) proba-

bility expression their coefficients will not be necessarily the same. Again keep in mind

that if we have more than one regressor, the X variables will represent a vector of vari-

ables and )will represent a vector of coefficients.

If you add the three probabilities given in Eqs. (9.3), (9.4), and (9.5), you will get a

value of 1, as it should because we have three mutually exclusive choices here.

The probability expressions given in Eqs. (9.3), (9.4), and (9.5) are highly nonlinear.

But now consider the following expressions:

ln
�

�
� )i

i
iX2

1
2 2

�

 
!!
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#
$$ � � (9.6)

ln
�
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� )i

i
iX3

1
3 3
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!!
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#
$$ � � (9.7)

� � �i i i1 2 31� � � (9.8)5

Expressions (9.6) and (9.7) are familiar from the bivariate logit model discussed in

Chapter 8. That is, the logits are linear functions of the explanatory variable(s). Re-

member that logits are simply the logs of the odds ratio. And the odds tell by how

much alternative j is preferred over alternative l.

The question that arises now is: why not estimate the bivariate logits using the tech-

niques we learned in Chapter 8? This is, however, not a recommended procedure for

various reasons. First, each of the bivariate logits will be based on different sample size.

Thus, if we estimate (9.6), observations for school choice 3 will be dropped. Similarly,

if we estimate (9.7), observations for school choice 2 will be dropped. Second, individ-

ual estimation of the bivariate logits will not necessarily guarantee that the three esti-

mated probabilities will add up to one, as they should. Third, the standard errors of the

estimated coefficients will generally be smaller if all the logits are estimated together

than if we were to estimate each logit independently.

It is for these reasons that models (9.6) and (9.7) are estimated simultaneously by

the method of maximum likelihood (ML). For our example we first show the ML esti-

mates obtained from Stata (Table 9.2) and then discuss the results.

At the outset note that we have chosen psechoice = 1 (no college) as the base cate-

gory, although one can choose any category as the base category. If we choose another

base, the coefficients given above will change. But no matter what the choice of the base

category, the estimated probabilities of the three choices will remain the same.

The coefficients given in the above table are to be interpreted in relation to the refer-

ence category, 1 in the present example.

Stata output is divided into two panels: The first panel gives the values of the vari-

ous coefficients of school choice 2 (2-year college) in relation to school choice 1 (no

college). That is, it gives estimates of the logit (9.6) and the second panel of the table
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5 From Eq. (9.6) ln ln� � � )i i iX2 1 2 2� � � and from Eq. (9.7) ln ln� � � )i i iX3 1 3 3� � � . Therefore,

ln( / ) ( ) ( )� � � � ) )i i iX2 3 2 3 2 3� � � � , which gives the log of the odds of choosing choice 2 over choice 3.



gives similar information for school choice 3 (a 4-year college) in relation to choice 1

(no college). That is, it gives estimates of the logit (9.7).

Before we interpret these results, let us look at the statistical significance of the esti-

mated coefficients. Since the sample size is quite large, we use z (standard normal)

rather than the t statistic to test the statistical significance.6 The above table gives the z

values as well as the p values (the exact level of significance) of these z values. In Panel 1

grades, family income, and parental education and in Panel 2 grades, family income,

parental education, and black variables are statistically significant.

In multiple regressions we use R2 as a measure of goodness of fit of the chosen

model. The R2 value lies between 0 and 1. The closer is R2 to 1, the better is the fit. But

the usual R2 does not work well for MLM.7 However, a pseudo R2 measure is devel-

oped by McFadden, which is defined as:

pseudo R
L

L
2

0

1� �
ln

ln

fit (9.9)
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Multinomial logistic regression Number of obs = 1000
LR chi2 (14) = 377.82
Prob > chi2 = 0.0000

Log likelihood = –829.74657 Pseudo R2 = 0.1855

psechoice Coef. Std. Err. z P>|z| [95% Conf. Interval]

2

hscath –.9250111 7103556 –0.00 1.000 –1.39e+07 1.39e+07

grades –.2995178 .0558307 –5.36 0.000 –.4089439 –.1900917

faminc .0098115 .0041953 2.34 0.019 .0015888 .0180342

famsiz –.0971092 .0726264 –1.34 0.181 –.2394543 .045236

parcoll .5264485 .2899096 1.82 0.069 –.0417638 1.094661

female .1415074 .1961643 0.72 0.471 –.2429676 .5259824

black .5559303 .4296774 1.29 0.196 –.286222 1.398083

_cons 2.268805 .5782357 3.92 0.000 1.135484 3.402126

3

hscath 31.86893 5023750 0.00 1.000 –9846337 9846400

grades –.6983134 .0574492 –12.16 0.000 –.8109118 –.5857151

faminc .0148592 .0041223 3.60 0.000 .0067797 .0229387

famsiz –.0665881 .0720734 –0.92 0.356 –.2078494 .0746732

parcoll 1.024194 .2773905 3.69 0.000 .4805189 1.56787

female –.0575686 .1964295 –0.29 0.769 –.4425633 .3274262

black 1.495133 .4170371 3.59 0.000 .6777555 2.312511

_cons 5.008016 .5671225 8.83 0.000 3.896476 6.119556

(psechoice==1 is the base outcome)

Table 9.2 Multinomial logistic model of school choice.

6 Recall that as the sample size increases indefinitely the t distribution converges to the normal

distribution.

7 This is generally true of all nonlinear (in the parameter) regression models.



where Lft = likelihood ratio for the fitted model and L0 = likelihood ratio for the model

without any explanatory variables. For our example the pseudo R2 is about 0.1855.

Instead of the pseudo R2 we can use the likelihood ratio test, which is generally com-

puted when we use the ML method. Under the null hypothesis that none of slope coef-

ficients are statistically significant, the computed LR follow the chi-square (�2 )

distribution with df equal to the total number of slope coefficients estimated, 14 in the

present case. The estimated LR of �377 is highly statistically significant, its p value

being practically zero. This suggests that the model we have chosen gives a good fit, al-

though not every slope coefficient is statistically significant.

How do we interpret the results given in the preceding table? There are various

ways of interpreting these results, which are described below.

Interpretation in terms of odds

Take, for example, Eq. (9.6), which gives the log of the odds (i.e. logit) in favor of school

choice 2 over school choice 1 – that is, a 2-year college over no college. A positive coef-

ficient of a regressor suggests increased odds for choice 2 over choice 1, holding all

other regressors constant. Likewise, a negative coefficient of a regressor implies that

the odds in favor of no college are greater than a 2-year college. Thus, from Panel 1 of

Table 9.2 we observe that if family income increases, the odds of going to a 2-year col-

lege increase compared to no college, holding all other variables constant. Similarly,

the negative coefficient of the grades variable implies that the odds in favor of no col-

lege are greater than a 2-year college, again holding all other variables constant (re-

member how the grades are coded in this example.) Similar interpretation applies to

the second panel of the Table 9.2.

To be concrete, let us interpret the coefficient of grade point average. Holding other

variables constant, if the grade point average increases by one unit, the logarithmic

chance of preferring a 2-year college over no college goes down by about 0.2995. In

other words, –0.2995 gives the change in ln( / )� �2 1i i for a unit change in the grade av-

erage. Therefore, if we take the anti-log of ln( / )� �2 1i i , we obtain � �2 1
0 2995

i i/ .� �e =

0.7412. That is, the odds in favor of choosing a 2-year college over no college are only

about 74%. This outcome might sound counterintuitive, but remember a higher grade

point on a 13-point scale means poor academic performance. Incidentally, the odds

are also known as the relative risk ratios (LRR).

Interpretation in terms of probabilities

Once the parameters are estimated, one can compute the three probabilities shown in

Eqs. (9.3), (9.4), and (9.5), which is the primary objective of MLM. Since we have 1,000

observations and 7 regressors, it would be tedious to estimate these probabilities for all

the individuals. However, with appropriate command, Stata can compute such proba-

bilities. But this task can be minimized if we compute the three probabilities at the

mean values of the eight variables. The estimated probabilities for 1,000 individuals

are given in the data table.

To illustrate, for individual #10, a white male whose parents did not have advanced

degrees and who did not go to a Catholic school, had an average grade of 6.44, family

income of 42.5, and family size 6, his probabilities of choosing option 1 (no college), or

option 2 (a 2-year college) or option 3 (a 4-year college) were, respectively, 0.2329,

0.2773 and 0.4897; these probabilities add to 0.9999 or almost 1 because of rounding
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errors. Thus, for this individual the highest probability was about 0.49 (i.e. a 4-year col-

lege). This individual did in fact choose to go to a 4-year college.

Of course, it is not the case that the estimated probabilities actually matched the

choices actually made by the individuals. In several cases the actual choice was differ-

ent from the estimated probability of that choice. That is why it is better to calculate

the choice probabilities at the mean values of the variables. We leave it for the reader

to compute these probabilities.8

Marginal effects on probability

We can find out the impact of a unit change in the value of a regressor on the choice

probability, holding all other regressors values constant. That is, we can find out

� ��ij ikX/ , which is the partial derivative of �ij with respect to the kth explanatory

variable. However, the marginal impact calculations are complicated. Not only that,

the marginal impact of Xk on the choice probability may have a different sign than the

sign of the coefficient of Xk. This happens because in MLM all the parameters (not just

the coefficient of Xk) are involved in the computation of the marginal impact of Xk on

the choice probability.9

It is for this reason that in practice it is better to concentrate on the odds or relative

risk ratios.

A word of caution in the use of MLM: the independence of irrelevant
alternatives (IIA)

A critical assumption of MLM is that the error term in estimating �ij , the choice prob-

ability for individual i for alternative j, is independent of the error term in estimating

�ik , the choice probability for individual i for alternative k (k j� ). This means that the

alternatives facing an individual must be sufficiently different from each other. This is

what is meant by IIA. Stated differently, IIA requires that in comparing alternative j

and k, the other alternatives are irrelevant.

To see how the IIA assumption can be violated, we can consider the classic “red bus,

blue bus” paradox. Suppose a commuter has two choices: travel by car or travel by bus.

The choice probability here is 1
2
. Therefore, the ratio of the two probabilities is 1.

Now suppose another bus service is introduced that is similar in all attributes, but

that it is painted in red color whereas the previous bus was painted in blue color. In this

case one would expect the choice probability to be 1
3

for each mode of transportation.

In practice, though, commuters may not care whether it is the red bus or the blue one.

The choice probability for the car is still 1
2
, but the probability for each bus choice is 1

4
.

As a result, the ratio of the choice probability for car and that for bus service is 2 in-

stead of 1. Obviously, the assumption of IIA is violated because some of the choices are

not independent, as required by IIA.
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8 The mean values for the explanatory variables for 1,000 observations are as follows: school choice

2.305, choice of Catholic school, 0.019, grade, 6.53039, family income, 51.3935, family size, 4.206, parents’

higher education, 0.308, female, 0.496, black, 0.056, school choice 1, 0.222, school choice 2, 0.251, and school

choice 3, 0.527.

9 This can be seen from the following expression: � � � � �� � ) � )ij ik ij j j
J

ij jX/ ( )� 2 .



The upshot of this example is that MLM models should not be considered if the al-

ternatives are close substitutes.10

9.3 Conditional logit model (CLM)

As noted previously, MLM is appropriate when regressors vary across individuals and

CLM is appropriate when regressors vary across choices. In CLM we cannot have

regressors that vary across individuals.11 Intuitively, we can see why. Suppose we have

to choose among four alternatives for transportation to work, say, auto, train, water

taxi, and bike, each with its own characteristics. If we also want to include the charac-

teristics of an individual, such as, say, income, it will not be possible to estimate the co-

efficient of income because the income value of that individual will remain the same

for all four means of transportation.

To estimate CLM, we rewrite (9.2) as follows:

�
� )

� )ij

X

m
m J X

ij

ime
�

�

�
� �

e

� 1

(9.10)

where �ij is the probability associated with the jth choice or alternative.

Note the critical difference between Eqs. (9.2) and (9.10): in Eq. (9.2) � and )differ

from choice to choice, hence the j subscript on them, whereas in Eq. (9.10) there is no

subscript on them. That is, in Eq. (9.10) there is a single intercept and a single slope co-

efficient (or a vector of slope coefficients if there is more than one regressor). Another

difference between the MLM and CLM is that the regressors have two subscripts (i

and j) in CLM, whereas in MLM there is only subscript (i). In the MLM the i subscript

varies from individual to individual (e.g. the income variable in the school choice

model), but remains the same across the alternatives. In CLM, on the other hand, the j

subscript for an individual varies across the alternatives.

Like the MLM, CLM is also estimated by the method of maximum likelihood. As in

the MLM, and for ease of interpretation, CLM can be expressed in logit form as:

log ( )
�

�
)ij

ik
ij ikX X

�

 
!
!

"

#
$
$ � � * (9.11)

This equation states that the log-odds between alternatives j and k is proportional to

the difference between the subject’s values on the regressors, the difference being

weighted by the estimated regression coefficient or coefficients if there is more than

one regressor, in which case )will represent a vector of coefficients.

Before we proceed further, we consider a concrete example.
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10 Hausman and McFadden have developed a test of the IIA hypothesis, but Long and Freese, op cit., (p.

244) do not encourage this test. One can allow for correlation in the error terms of the choice probabilities

by considering the multinomial probit model. But because it is complicated, in practice researchers prefer

MLM.

11 But if we consider mixed MLM (=MXL), we can allow for individual characteristic by making use of

appropriate dummy variables, as discussed in Section 9.4.



Choice of travel mode

A common problem facing a traveler is to decide the means of transportation. This

problem was studied by Greene and Hensher, among others.12 The data here consists

of 840 observations on 4 modes of travel for 210 individuals. The variables used in the

analysis are as follows:

Mode = Choice: air, train, bus or car

Time = Terminal waiting time, 0 for car

Invc = In-vehicle cost–cost component

Invt = Travel time in vehicle

GC = Generalized cost measure13

Hinc = Household income

Psize = Party size in mode chosen

See Table 9.3 on the companion website.

Time, invc, invt, and GC are choice-specific variables, for they vary among choices.

Hinc and Psize are individual-specific variables and they cannot be included in the

CLM because their values remain the same across the modes of transportation. Of

course, if we consider the mixed model, we can include both choice-specific and indi-

vidual-specific variables

We will first consider the CLM which only includes the choice-specific variables.

As in the case of MLM, we use the method of maximum likelihood to estimate CLM.

As in the MLM, we also estimate this model, treating one means of transportation as

the reference choice.14 We use car as the reference choice and consider the other

choices in relation to car.

Using the clogit routine in Stata 10, we obtained the results shown in Table 9.4.

Before interpreting these results, notice that all estimated coefficients are highly statis-

tically significant, for their p values are practically zero. The likelihood ratio statistic of

about 213 is also highly significant; if we were to maintain that all the slope coefficients

are simultaneously equal to zero, we can reject this hypothesis overwhelmingly.

The negative coefficients of termtime, invect, and traveltime make economic sense.

If for instance, the travel mode that has longer waiting time at the terminal than travel

by car, people will tend to choose less that mode of travel. Similarly, if the travel time is

greater for one means of transportation than car, that mode of transportation is less

likely to be chosen by the individual. The positive sign of travel cost, which includes

the opportunity cost, also makes sense in that people will choose that mode of trans-

portation that has lower opportunity cost than the car.

Air, train, and bus in Table 9.4 are choice-specific constants.

Another way of looking at the results presented in the preceding table is in terms of

the odds ratios, which are shown in Table 9.5.
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12 For a discussion of this study and the data, see http://pages.stern.nyu.edu/~wgreene/Text/

econometric analysis.htm.

13 This equals the sum of Invc and Invt and the opportunity cost of the individual’s time.

14 Remember that the sum of the probabilities of the four means of travel must be 1. Hence, we cannot

estimate all the probabilities independently. Once we estimate probabilities of three modes of

transportation (any three will do), the probability of the fourth mode is determined automatically.



The interpretation of the odds ratios is as follows. Take, for example, the value of

� 0 99. of travel time. For any mode of transportation, holding other modes constant,

increasing travel time by 1 minute decreases the odds of using that mode by a factor of

0.98 or 2%. Likewise, for any mode of transportation, holding the other modes con-

stant, increasing the terminal time by 1 minute decreases the odds of that model by a

factor of � 0 90. or about 10%.

The alternative-specific constants, or intercepts, usually are not of interest except

for estimating probabilities. The positive and statistically significant values of these

constants suggest that the threshold values of travel by air, train and bus are distinct

from the that of travel by car.

Stata’s predict command can be used to predict probabilities for each alternative

for each individual, where the predicted probabilities sum to 1 for each individual. Re-

member that each traveler has a choice of four means of transportation. For example,

the probabilities of traveling by air, train, bus, and car for the first traveler in our

sample are: 0.06, 0.28, 0.12, and 0.54, respectively, the sum of these probabilities being

1. These probabilities would suggest that this traveler would probably choose travel by
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Conditional (fixed-effects) logistic regression Number of obs = 840
LR chi2(7) = 213.23
Prob > chi2 = 0.0000

Log likelihood = –184.50669 Pseudo R2 = 0.3662

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

termtime –.1036495 .0109381 –9.48 0.000 –.1250879 –.0822112

invehiclec~t –.0849318 .0193825 –4.38 0.000 –.1229208 –.0469428

traveltime –.0133322 .002517 –5.30 0.000 –.0182654 –.008399

travelcost .0692954 .0174331 3.97 0.000 .0351272 .1034635

air 5.204743 .9052131 5.75 0.000 3.430558 6.978928

train 4.360605 .5106654 8.54 0.000 3.359719 5.36149

bus 3.763234 .5062595 7.43 0.000 2.770984 4.755485

Table 9.4 Conditional logit model of travel mode.

Conditional (fixed-effects) logistic regression Number of obs = 840
LR chi2(7) = 213.23
Prob > chi2 = 0.0000

Log likelihood = –184.50669 Pseudo R2 = 0.3662

choice Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

termtime .9015412 .0098612 –9.48 0.000 .8824193 .9210774

invehiclec~t .9185749 .0178043 –4.38 0.000 .8843337 .954142

traveltime .9867563 .0024837 –5.30 0.000 .9819004 .9916362

travelcost 1.071753 .0186839 3.97 0.000 1.035751 1.109005

air 182.134 164.8701 5.75 0.000 30.89387 1073.767

train 78.30446 39.98738 8.54 0.000 28.78109 213.0422

bus 43.08757 21.81349 7.43 0.000 15.97435 116.22

Table 9.5 Conditional logit model of travel mode: odds ratios.



car. In actuality, he did choose to travel by car. Of course, this will not necessarily be

true of all other travelers.

In addition to the odds ratio, we can also compute the marginal, or incremental,

effect of a unit change in the value of a regressor on the choice probabilities, holding all

other regressors constant. You will recall that in the multinomial logit model (MNL)

all the (slope) parameters are involved in determining the marginal effect of a

regressor on the probability of choosing the mth alternative. In the conditional logit

model (CLM), on the other hand, the sign of Bm , the coefficient of the mth regressor, is

the sign of the marginal effect of that regressor on the choice probability. The actual

computations of these marginal effects can be done using the asclogit routine of

Stata, which we do not pursue here.

9.4 Mixed logit (MXL)

As noted, in the MLM we consider only the subject-specific attributes, whereas in

CLM we consider only the choice-specific attributes or characteristics. But in MXL we

can include both sets of characteristics. In our travel data, we also have information

about household income (hinc) and party size (psize), the number of people traveling

together. These are subject-specific characteristics. To incorporate them in the analy-

sis, MXL proceeds as follows:

Interact the subject-specific variables with the three modes of transportation, air,

train, and bus, keeping in mind that car is the reference mode of transportation. In

other words, multiply the subject-specific variables and the three modes of transporta-

tion as follows:

air*hinc, train*hinc, bus*hinc, air*psize, train*psize, and bus*psize.

Then use the clogit command of Stata to obtain Table 9.6.

Again to help us interpret these numbers, we will compute the odds ratio (Table

9.7).

The odds ratio for terminal time, in-vehicle time, and travel time show that a unit

increase in each of these values reduces the attractiveness of that means of transporta-

tion compared with travel by car. If you look at the odds ratio of the interaction vari-

ables, we see, for instance, that a unit increase in family income, decreases the odds of

travelling by train by about 5.75% [(1 – 0.94250) × 100], holding all else constant. Simi-

larly, if the party size increases by one member, the odds of travelling by air decreases

by about 60.25% [(1 – 0.3975) × 100], ceteris paribus.

We leave it for the reader to interpret the other odds coefficient.

9.5 Summary and conclusions

In this chapter we considered three models, multinomial logit (MNL), conditional

logit (CL), and mixed logit (MXL) models. Faced with several choices in a variety of sit-

uations, these models attempt to estimate the choice probabilities, that is, probabili-

ties of choosing the best alternative, best in the sense of maximizing the utility or

satisfaction of the decision maker.
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Conditional (fixed-effects) logistic regression Number of obs = 840
LR chi2(12) = 237.31
Prob > chi2 = 0.0000

Log likelihood = –172.46795 Pseudo R2 = 0.4076

choice Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

termtime .9037706 .0100701 –9.08 0.000 .8842476 .9237247

invehiclec~t .9913675 .0078083 –1.10 0.271 .976181 1.00679

traveltime .9958778 .0008891 –4.63 0.000 .9941366 .997622

air 417.8655 475.609 5.30 0.000 44.89628 3889.223

train 263.3614 187.3268 7.84 0.000 65.32806 1061.707

bus 90.43896 71.97059 5.66 0.000 19.00974 430.2639

airXinc 1.007509 .0133018 0.57 0.571 .9817723 1.03392

trainXinc .9424926 .0140359 –3.98 0.000 .9153803 .9704078

busXinc .9793185 .0160124 –1.28 0.201 .9484324 1.01121

airXpartys .3975557 .1027707 –3.57 0.000 .2395283 .6598406

trainXparty 1.241441 .2900477 0.93 0.355 .7853314 1.962452

busXparty .862496 .2956375 –0.43 0.666 .4405457 1.688586

Table 9.7 Mixed conditional logit model of travel mode: odds ratios.

Iteration 0: log likelihood = –186.1019
Iteration 1: log likelihood = –172.82527
Iteration 2: log likelihood = –172.46893
Iteration 3: log likelihood = –172.46795
Iteration 4: log likelihood = –172.46795
Conditional (fixed-effects) logistic regression Number of obs = 840

LR chi2(12) = 237.31
Prob > chi2 = 0.0000

Log likelihood = –172.46795 Pseudo R2 = 0.4076

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

termtime –.1011797 .0111423 –9.08 0.000 –.1230182 –.0793412

invehiclec~t –.00867 .0078763 –1.10 0.271 –.0241073 .0067673

traveltime –.0041307 .0008928 –4.63 0.000 –.0058806 –.0023808

air 6.03516 1.138187 5.30 0.000 3.804355 8.265965

train 5.573527 .7112915 7.84 0.000 4.179422 6.967633

bus 4.504675 .7957919 5.66 0.000 2.944952 6.064399

airXinc .0074809 .0132027 0.57 0.571 –.0183959 .0333577

trainXinc –.0592273 .0148923 –3.98 0.000 –.0884157 –.0300388

busXinc –.0208984 .0163505 –1.28 0.201 –.0529448 .0111481

airXpartys –.9224203 .2585064 –3.57 0.000 –1.429084 –.415757

trainXparty .2162726 .233638 0.93 0.355 –.2416494 .6741945

busXparty –.1479247 .3427697 –0.43 0.666 –.819741 .5238915

Table 9.6 Mixed conditional logit model of travel mode.



In MLM the choice probabilities are based on individual characteristics, whereas in

CLM these probabilities are based on choice-specific characteristics. In the MXL we

incorporate both the individual and choice-specific characteristics.

All these models are estimated by the method of maximum likelihood, for these

models are highly nonlinear.

Once these models are estimated, we can interpret the raw coefficients themselves

or convert them into odds ratios, as the latter are easy to interpret. We can also assess

the marginal contribution of regressors to the choice probability, although these cal-

culations can sometimes be involved. However, statistical packages, such as Stata, can

compute these marginal effects with comparative ease.

The main purpose of discussing these topics in this chapter was to introduce the be-

ginner to the vast field of multi-choice models. The illustrative example in this chapter

shows how one can approach these models. Once the basics are understood, the

reader can move on to more challenging topics in this field by consulting the refer-

ences.15 It is beyond the scope of this book to cover the more advanced topics. But we

will discuss one more topic in this area, the topic of ordinal or ordered logit in the

next chapter.

In closing, a warning is in order. The models discussed in this chapter are based on

the assumption of IIA, independence of irrelevant alternatives, which may not always

be tenable in every case in practice. Recall the “red bus, blue bus” example we dis-

cussed earlier. Although one can use the Hausman-type tests to assess IIA, they do not

always work well in practice. However, there are alternative techniques to deal with

the IIA problem, for which we refer the reader to the Long-Freese and Greene texts

cited earlier.

Exercises

Several data sets are available on the websites of the books listed in the footnotes in this

chapter. Access the data of your interest and estimate the various models discussed in

this chapter so that you can be comfortable with the techniques discussed in the pre-

ceding pages.
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15 See, Christiaan Heij, Paul de Boer, Philip Hans Franses, Teun Kloek and Herman K. van Dijk,

Econometrics Methods with Applications in Business and Economics, Oxford University Press, Oxford, UK,

2004, Ch. 6; A. Colin Cameron and Pravin K. Trivedi, Microeconometrics: Methods and Applications,

Cambridge University Press, New York, 2005, Ch. 15; Philip Hans Franses and Richard Papp, Quantitative

Models in Marketing Research, Cambridge University Press, Cambridge, U.K., 2001, Chapter 5.



10
Ordinal regression models

In Chapter 1 we discussed four types of variables that are commonly encountered in

empirical analysis: ratio scale, interval scale, ordinal scale, and nominal scale. The ear-

lier chapters largely discussed regression models that dealt with interval scale or ratio

scale variables. In Chapter 8 we discussed binary nominal scale variables and in Chap-

ter 9 we considered multi-category nominal scale variables. In this chapter we discuss

regression models that involve ordinal scale variables.

In our travel example, discussed in the previous chapter, we considered four means

of transportation – air, train, bus, and car. Although we labeled these means of trans-

portation 1, 2, 3, and 4, we did not attribute ordinal properties to these numbers. They

are simply nominal or category labels.

However, in many applications in the social and medical sciences the response cate-

gories are ordered or ranked. For example, in the Likert-type questionnaires the re-

sponses may be “strongly agree”, “agree”, “disagree”, or “strongly disagree”. Similarly,

in labor market studies we may have workers who work full time (40+ hours per week),

or who work part time (fewer than 20 hours per week) or who are not in the workforce.

Another example is bond ratings provided by companies, such as Moody’s or S&P.

Corporate bonds are rated as B, B+, A, A+, A++, and so on, each higher rating denot-

ing higher creditworthiness of the entity issuing the bonds.

Although there is clear ranking among the various categories, we cannot treat them

as interval scale or ratio scale variables. Thus we cannot say that the difference be-

tween full-time work and part-time work or between part-time work and no work is

the same. Also, the ratio between any two categories here may not be practically

meaningful.

Although MLM models can be used to estimate ordinal-scale categories, they do

not take into account the ordinal nature of the dependent variable.1 The ordinal logit

and ordinal probit are specifically developed to handle ordinal scale variables. Be-

cause of the mathematical complexity of the ordinal probit model, we will only discuss

the ordinal logit model in this chapter. In practice it does not make a great difference

whether we use ordinal probit or ordinal logit models.2

180

1 There are also technical reasons. Compared to MLM, ordinal logit or ordinal probit models are more

parsimonious in that we need to estimate fewer parameters.

2 Several statistical packages have routines to estimate both these models. The difference between the

two models lies in the probability distribution used to model the error term. The error term in the ordinal

probit model is assumed to be normally distributed, whereas the error term in the ordinal logit model is

assumed to follow the logistic distribution.



10.1 Ordered multinomial models (OMM)

Suppose we have the following model:
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where Yi
* is unobserved, the Xs are the regressors and ui is the error term.

Yi
* is often known as a latent or index variable. For example, it may denote the

creditworthiness of a company, or happiness index of an individual. Although we

cannot observe it directly, the latent variable depends on one or more regressors, such

as diet, weight, or height of an individual in a medical study.3

Further suppose we have n independent individuals (or observations) and they face

J-ordered alternatives, such that
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where a a a aJ1 2 3 1� � � �� .

That is, we observe an individual Yi in one of the J ordered categories, these catego-

ries being separated by the threshold parameters or cutoffs, the as. In other words,

the threshold parameters demarcate the boundaries of the various categories. Return-

ing to the bond rating example, if a bond is rated B, it will be in a lower category than a

bond rated B+, which will lie below the category that gets an A– rating, and so on.

The ordered logit model estimates not only the coefficients of the X regressors but

also the threshold parameters. But note that the slope coefficients of the X regressors

are the same in each category; it is only that their intercepts (cutoffs) differ. In other

words, we have parallel regression lines4, but they are anchored on different intercepts.

That is why OLM are also known as proportional odds models.5

10.2 Estimation of ordered logit model (OLM)

The method of estimation, as in all multinomial regression models, is by the method of

maximum likelihood. The underlying estimation principle is simple: we want to

estimate
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3 The latent variable is treated as continuous and the observed responses represent crude measurement

of that variable. Even though we classify people as liberal or conservative, there is conceivably a continuum

of conservative or liberal ideology.

4 More correctly, parallel regression surfaces.

5 For further details, see Daniel A. Powers and Yu Xie, Statistical Methods for Categorical Data Analysis,

2nd edn, Emerald Publishers, UK, 2008, p. 229.
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That is, Eq. (10.3) gives the (cumulative) probability that Yi falls in a category j and

below (i.e. in category 1, 2, ..., or j).

Recall that to compute the probability that a random variable takes a value equal to

or less than a given number, we use the cumulative distribution function (CDF) of

probability distribution, the main question being: which probability distribution? As

noted elsewhere, if the error term ui is assumed to follow the logistic distribution, we

obtain the ordered logit model (OLM), but if it follows the normal distribution, we

obtain the ordered probit model (OPM). For reasons stated earlier, we will estimate

OLM.6

Models for ordered responses use cumulative probabilities as shown in Eq. (10.3).

Now to compute such probabilities, we use

exp( )

exp( )

a

a

j

j

�

� �

BX

BX1
(10.4)7

which is the CDF of the logistic probability distribution. Note that BX stands for

�1
k

k kB X .

Now the effect of a regressor on the ordered dependent variable is nonlinear, as it

gets channeled through a nonlinear CDF (logit in our case).8 This makes interpreta-

tion of the OLM somewhat complicated. To make the interpretation easier, we can

make use of the odds ratio.

Since the outcomes on the left-hand side of Eq. (10.2) reflect the ordering of the re-

sponse scale, it is customary to consider the odds ratio defined by

Pr[ | ]

Pr[ | )

Pr[ | ]

Pr[ Pr( | )]

Y j X

Y j X

Y j X

Y j X

i

i

i

i

�

�
�

�

� �1
(10.5)

where

Pr[ | ) Pr[ | ]Y j X Y m Xi i
m

j

� � �
�
	

1

(10.6)

which denotes the cumulative probability that the outcome is less than or equal to

j.

Now if we use the logistic CDF given in Eq. (10.4) to compute the odds ratio in

Eq. (10.5) and take the log of this odds ratio (i.e. logit), we obtain, after

simplification,
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6 The following discussion is based on John Fox, Applied Regression Analysis, Linear Models, and Related

Methods, Sage Publications, California, 1997, pp. 475–7, and Alan Agresti, An Introduction to Categorical

Data Analysis, 2nd edn, Wiley, New York, 2007.

7 The PDF of a standard logistic distribution of variable Y has mean of zero and a variance of �2 3/ and is

given by f Y Y Y( ) exp( ) / [ exp( )]� �1 2 and its CDF is given by FY Y Y( ) exp( ) / [ exp( )]� �1 .

8 CDFs are elongated S-shaped curves, which are obviously nonlinear.
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(See the Appendix to this chapter for a derivation of this equation.)

Thus Eq. (10.7) gives a sequence of logits (or log odds; three such logits in the exam-

ple discussed in Section 10.3), which all have the same regressors and the same (slope)

coefficients but different intercepts. It is interesting to observe that the logit in Eq.

(10.7) is linear in a as well as B.

From Eq. (10.7) it is clear that all the regressors have the same impact on the (or-

dered) dependent variable, given by their B coefficients, and the classification into the

ordered categories shown in Eq. (10.2) depends on the cutoff or intercept coefficient,

aj. Notice that the B coefficient has no j subscript on it.

It is also clear from Eq. (10.7) why OLM is called a proportional-odds model be-

cause for given X values any two cumulative log odds (i.e. logits) say, at categories l and

m, differ only by the constant (al – am). Therefore, the odds are proportional, hence

the name proportional odds model.

Before we proceed further, let us illustrate the ordered logit model with a concrete

example.

10.3 An illustrative example: attitudes toward working
mothers9

The 1977 and 1989 General Social Survey asked respondents to evaluate the following

statement: A working mother can establish just as warm and secure of relationship with

her child as a mother who does not work. Responses were recorded as: 1 = strongly dis-

agree, 2 = disagree, 3 = agree, and 4 = strongly agree. In all 2,293 responses were ob-

tained. For each respondent we have the following information: yr89 = survey year

1989, gender, male = 1, race, white = 1, age = age in years, ed = years of education, prst

= occupational prestige.

Using the ologit command of Stata 10, we obtained the results in Table 10.1.

Before we interpret the results, let us look at the overall results. Recall that under

the null hypothesis that all regressor coefficients are zero, the LR test follows the

chi-square distribution with degrees of freedom equal to the number of regressors, 6

in the present case. In our example this chi-square value is about 302. If the null hy-

pothesis were true, the chances of obtaining a chi-square value of as much as 302 or

greater is practically zero. So collectively all the regressors have strong influence on

the choice probability.

The model also gives the Pseudo R2 of 0.05. This is not the same as the usual R2 in

OLS regression – that is, it is not a measure of the proportion of the variance in the

regressand explained by the regressors included in the model. Therefore, the Pseudo

R2 value should be taken with a grain of salt.
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original data appear on http://www.ats.ucla.edu/stat/stata/dae.



The statistical significance of an individual regression coefficient is measured by

the Z value (the standard normal distribution Z). All the regression coefficients, except

prst, are individually highly statistically significant, their p values being practically

zero. Prst, however, is significant at the 7% level.

Interpretation of the regression coefficients

The regression coefficients given in the preceding table are ordered log-odds (i.e. logit)

coefficients. What do they suggest? Take, for instance, the coefficient of the education

variable of � 0 07. . If we increase the level of education by a unit (say, a year), the or-

dered log-odds of being in a higher warmth category increases by about � 0 07. , holding

all other regressors constant. This is true of warm category 4 over warm category 3 or

of warm category 3 over 2 or warm category 2 over category 1. Other regression coeffi-

cients given in the preceding table are to be interpreted similarly.

Based on the regression results, you can sketch the regression lines for the four cate-

gories:10 if the assumption of the proportional odds model is valid, the regression lines

will be all parallel. By convention, one of the categories is chosen as the reference cate-

gory and its intercept value is fixed at zero.

In practice it is often useful to compute the odds-ratios to interpret the various

coefficients. This can be done easily by exponentiating (i.e. raising e to a given power)

the estimated regression coefficients. To illustrate, take the coefficient of the educa-

tion variable of 0.07. Exponentiating this we obtain e0 07 10725. .� . This means if we
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ologit warm yr89 male white age ed prst
Iteration 0: log likelihood = –2995.7704
Iteration 1: log likelihood = –2846.4532
Iteration 2: log likelihood = –2844.9142
Iteration 3: log likelihood = –2844.9123
Ordered logistic regression Number of obs = 2293
LR chi2(6) = 301.72
Prob > chi2 = 0.0000
Log likelihood = –2844.9123 Pseudo R2 = 0.0504

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

yr89 .5239025 .0798988 6.56 0.000 .3673037 .6805013

male –.7332997 .0784827 –9.34 0.000 –.8871229 –.5794766

white –.3911595 .1183808 –3.30 0.001 –.6231815 –.1591374

age –.0216655 .0024683 –8.78 0.000 –.0265032 –.0168278

ed .0671728 .015975 4.20 0.000 .0358624 .0984831

prst .0060727 .0032929 1.84 0.065 –.0003813 .0125267

/cut1 –2.465362 .2389126 –2.933622 –1.997102

/cut2 –.630904 .2333155 –1.088194 –.173614

/cut3 1.261854 .2340179 .8031873 1.720521

Note: cut1, cut2 and cut3, are respectively, the intercepts for the second, third and the fourth category, the
intercept for the lowest category being normalized to zero.

Table 10.1 OLM estimation of the warmth model.

10 Actually you can do it only for a regressor at a time; there is no way to visualize the regression surface

involving six regressors on a two-dimensional surface.



increase education by a unit, the odds in favor of higher warmth category over a lower

category of warmth are greater than 1. We need not do these calculations manually, for

packages like Stata can do this routinely by issuing the command in Table 10.2. (Note:

‘or’ stands for odds ratio.)

As you can see from these odds ratios, the odds of getting higher warmth ranking

are lower if you are a male or a white person. The odds are about even for education

and parental education. The odds are higher for year 1989 compared to year 1977.

Predicting probabilities

After estimating the ordered logit model in Stata, if you issue the command Predict

(followed by the names of the four variables), you will get the estimated probabilities

for all the 2,293 participants in the survey. For each participant there will be four prob-

abilities, each for the four warmth categories. Of course, for each participant the sum

of these four probabilities will be 1, for we have four mutually exclusive warmth cate-

gories. We will not present all the estimated probabilities, for that will consume a lot of

space.

Marginal effect of a regressor

It can be seen from Eq. (10.1), that the marginal effect of the jth regressor on Yi
* is as

follows:

�

�
�

Y

X
Bi

ij
j

*

(10.8)

That is, holding all other variables constant, for a unit increase in Xij, Yi
* is expected

to change by Bj units. But as Long notes, “Since the variance of y* cannot be estimated
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ologit warm yr89 male white age ed prst, or
Iteration 0: log likelihood = –2995.7704
Iteration 1: log likelihood = –2846.4532
Iteration 2: log likelihood = –2844.9142
Iteration 3: log likelihood = –2844.9123
Ordered logistic regression Number of obs = 2293
LR chi2(6) = 301.72
Prob > chi2 = 0.0000
Log likelihood = –2844.9123 Pseudo R2 = 0.0504

warm Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

yr89 1.688605 .1349175 6.56 0.000 1.443836 1.974867

male .4803214 .0376969 –9.34 0.000 .4118389 .5601915

white .6762723 .0800576 –3.30 0.001 .5362357 .8528791

age .9785675 .0024154 –8.78 0.000 .9738449 .983313

ed 1.06948 .0170849 4.20 0.000 1.0365131 .103496

prst 1.006091 .003313 1.84 0.065 .9996188 1.012605

/cut1 –2.465362 .2389126 –2.933622 –1.997102

/cut2 –.630904 .2333155 –1.088194 –.173614

/cut3 1.261854 .2340179 .8031873 1.720521

Table 10.2 Odds ratios of the warm example.



from the observed data, the meaning of a change of )k y* is unclear”.11 Also, as

Wooldridge notes,

...we must remember that), by itself, is of limited interest. In most cases we are not

interested in E y x x( | )* � ), as y* is an abstract construct. Instead we are interested in

the response probabilities P y j x( | )� ...12

However, one can use the Stata routine to compute B* standardized coefficient to

assess the impact of regressor on the logits.13

10.4 Limitation of the proportional odds model14

To sum up, the proportional odds model estimates one equation over all levels of the

regressand, or the dependent variable, the only difference being in their intercepts (the

cutoff points). That is why we obtain parallel regression lines (surfaces) for the various

levels. This may be a drawback of the proportional log-odds model. Therefore, it is im-

portant that we test this assumption explicitly.

Informal test of constant B coefficient

Since we have J categories of ordered responses, we can compute J – 1 binary logit re-

gressions on the odds of being in a higher vs. lower category of Y. Thus, if the Ys are or-

dered as in Eq. (10.2), the log-odds (i.e. logits) of a response greater than j vs. less than j

can be expressed as:

ln
( )

( )
, , , . . . ,

Pr

Pr

Y j

Y j
a B X j Ji

i
j j

�

�

�

�
�

�

�
� � � � �1 2 1 (10.9)

This amounts to estimating separate binary logit models for J – 1 response variables.

So in all we will have J – 1 estimates of Bj. Therefore, the assumption of parallel regres-

sions means:

B B B BJ1 2 1� � � ��� (10.10)

An examination of these coefficients will suggest whether all the estimated B coeffi-

cients are the same. If they do not seem the same, then we can reject the hypothesis of

parallel regressions. Of course, we can test the hypothesis in Eq. (10.10) more formally,

which is what the omodel and Brant tests do.

Formal test of parallel regression lines

The tests omodel and Brant, developed by Long and Freese (op cit.), can be used to test

the assumption of parallel regression lines. We will not discuss the actual mechanics of

these tests, but they can be downloaded in Stata.

The omodel test gave the results in Table 10.3.
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11 See J. Scott Long, Regression Models for Categorical and Limited Dependent Variables, Sage

Publications, California, 1997, p. 128.

12 Jeffrey M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge,

Massachusetts, 2002, pp. 505–6.

13 On this, see Scott Long, op cit.

14 The following discussion is based on Scott Long, op cit., pp. 141–5.



The null hypothesis in Eq. (10.10) can be tested by the chi-square test. In the present

instance, as Table 10.3 shows, the chi-square value of 48.91 (for 12 df) is highly signifi-

cant, thus leading to the rejection of the null hypothesis. In other words, the propor-

tionality assumption in the present example does not hold and so the proportional

odds model is not appropriate. What then?

Alternatives to proportional odds model

If the assumption of parallel regression lines is violated, one alternative is to use the

MLM discussed in the previous chapter or other alternatives that we do not pursue

here. But an accessible discussion of the alternatives can be found in the Long–Freese

book, Section 5.9.

We conclude this chapter by illustrating another example of OLM.

Decision to apply for graduate school

College seniors were asked if they are (1) unlikely, (2) somewhat likely, or (3) very likely

to apply to graduate school, which are coded as 1, 2, and 3, respectively. Based on hy-

pothetical data on 400 college seniors along with information about three variables

pared (equal to 1 if at least one parent has graduate education), public (1 if the under-

graduate institution is a public university), and GPA (student’s grade point average),

we obtained the OLM of Table 10.4.15
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omodel logit warm yr89 male white age ed prst
Iteration 0: log likelihood = –2995.7704
Iteration 1: log likelihood = –2846.4532
Iteration 2: log likelihood = –2844.9142
Iteration 3: log likelihood = –2844.9123
Ordered logit estimates Number of obs = 2293

LR chi2(6) = 301.72
Prob > chi2 = 0.0000

Log likelihood = –2844.9123 Pseudo R2 = 0.0504

warm Coef. Std. Err. z P>|z| [95% Conf. Interval]

yr89 .5239025 .0798988 6.56 0.000 .3673037 .6805013

male –.7332997 .0784827 –9.34 0.000 –.8871229 –.5794766

white –.3911595 .1183808 –3.30 0.001 –.6231815 –.1591374

age –.0216655 .0024683 –8.78 0.000 –.0265032 –.0168278

ed .0671728 .015975 4.20 0.000 .0358624 .0984831

prst .0060727 .0032929 1.84 0.065 –.0003813 .0125267

_cut1 –2.465362 .2389126 (Ancillary parameters)

_cut2 –.630904 .2333155

_cut3 1.261854 .2340179

Approximate likelihood-ratio test of proportionality of odds
across response categories:
chi2(12) = 48.91
Prob > chi2 = 0.0000

Table 10.3 Test of the warmth parallel regression lines.

15 These data are from: http://www.ats.ucla.edu/stat/stata/dae/ologit.dta.



Before we interpret the results, notice that the regressors pared and GPA are statis-

tically significant, but public institution is not. Since we have three choices, we will

have only two cutoff points, both of which are significant, suggesting that all three cat-

egories of intentions are distinct.

Interpretation of results

It is easy to interpret the results if we obtain the odds ratios, which are given in Table

10.5. As this table shows, the OR of pared of 2.85 suggests that if we increase pared by 1

unit (i.e. going from 0 to 1), the odds of high apply vs. the combined middle and low

apply are 2.85 times greater than if neither parent went to college, ceteris paribus. For a

one unit increase in gpa, the odds of the low and middle categories of apply versus the

high category of apply are 1.85 times greater than if gpa did not increase, ceteris paribus.
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ologit apply pared public gpa
Iteration 0: log likelihood = –370.60264
Iteration 1: log likelihood = –358.605
Iteration 2: log likelihood = –358.51248
Iteration 3: log likelihood = –358.51244
Ordered logistic regression Number of obs = 400

LR chi2(3) = 24.18
Prob > chi2 = 0.0000

Log likelihood = –358.51244 Pseudo R2 = 0.0326

apply Coef. Std. Err. z P>|z| [95% Conf. Interval]

pared 1.047664 .2657891 3.94 0.000 .5267266 1.568601

public –.058682
8

.2978588 –0.20 0.844 –.642475
4

.5251098

gpa .6157458 .2606311 2.36 0.018 .1049183 1.126573

/cut1 2.203323 .7795353 .6754622 3.731184

Table 10.4 OLM estimation of application to graduate school.

ologit apply pared public gpa,or
Iteration 0: log likelihood = –370.60264
Iteration 1: log likelihood = –358.605
Iteration 2: log likelihood = –358.51248
Iteration 3: log likelihood = –358.51244
Ordered logistic regression Number of obs = 400

LR chi2(3) = 24.18
Prob > chi2 = 0.0000

Log likelihood = –358.51244 Pseudo R2 = 0.0326

apply Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

pared 2.850982 .75776 3.94 0.000 1.69338 4.799927

public .9430059 .2808826 –0.20 0.844 .5259888 1.690644

gpa 1.851037 .4824377 2.36 0.018 1.11062 3.085067

/cut1 2.203323 .7795353 .6754622 3.731184

/cut2 4.298767 .8043146 2.72234 5.875195

Table 10.5 Odds ratios for Table 10.4.



Because of the proportional odds assumption, the same odds (1.85) hold between low

apply and the combined categories of middle and high apply.

As we remarked about the limitation of the proportional odds model in the warmth

example, it is important to find out if in the present example the proportional odds as-

sumption hold. Towards that end, we can use the omodel command in Stata. Applying

this command, we obtained the results in Table 10.6.

The test of the proportionality is given by the chi-square statistic, which in this ex-

ample has a value of 4.06, which for 3 df has a rather high probability of approximately

0.26. Therefore, unlike the warmth example discussed earlier, in the present case it

seems that the proportional-odds assumption seem to hold.

It may be noted that the Brant test is similar to the Omodel test so we will not pres-

ent results based on the former.

10.5 Summary and conclusions

In Chapter 9 we discussed the multinomial logit model as well as the conditional logit

model, and in this chapter we discussed the ordinal logit model. These are all models

of discrete dependent variables, but each has its special features. In MLM the depend-

ent variable is nominal, but the nominal outcome is determined by characteristics that

are specific to the individual. In CLM the nominal outcome depends on the character-

istics of the choices rather than on the characteristics of the individual. In OLM we

deal with discrete variables that can be ordered or ranked.

We discussed the limitations of MLM and CLM in the previous chapters. The as-

sumption of proportional odds in OLM is often violated in many an application. But if

this assumption is valid, and if the data are truly ordinal, OLM is preferred to MLM be-

cause we estimate a single regression for each ordered category; the only difference is
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omodel logit apply pared public gpa
Iteration 0: log likelihood = –370.60264
Iteration 1: log likelihood = –358.605
Iteration 2: log likelihood = –358.51248
Iteration 3: log likelihood = –358.51244
Ordered logit estimatesNumber of obs = 400

LR chi2(3) = 24.18
Prob > chi2 = 0.0000

Log likelihood = –358.51244Pseudo R2 = 0.0326

apply Coef. Std. Err. z P>|z| [95% Conf. Interval]

pared 1.047664 .2657891 3.94 0.000 .5267266 1.568601

public –.0586828 .2978588 –0.20 0.844 –.6424754 .5251098

gpa .6157458 .2606311 2.36 0.018 .1049183 1.126573

_cut1 2.203323 .7795353 (Ancillary parameters)

_cut2 4.298767 .8043146

Approximate likelihood-ratio test of proportionality of odds
across response categories:
chi2(3) = 4.06
Prob > chi2 = 0.2553

Table 10.6 Test of the proportional odds assumption of intentions to apply to graduate school.



that the intercepts differ between categories. Therefore OLM is more economical than

MLM in terms of the number of parameters estimated.

Even then, we need to test explicitly the assumption of proportionality in any con-

crete application by applying tests, such as Omodel or Brant.

Exercises

10.1 In the illustrative example (warmth category), the assumptions of the propor-

tional odds model is not tenable. As an alternative, estimate a multinomial logit model

(MLM) using the same data. Interpret the model and compare it with the proportional

odds model.

10.2 Table 10.7 (available on the companion website) gives data on a random sample

of 40 adults about their mental health, classified as well, mild symptom formation,

moderate symptom formation, and impaired in relation to two factors, socio-eco-

nomic status (SES) and an index of life events (a composite measure of the number and

severity of important events in life, such as birth of a child, new job, divorce, or death in

a family for occurred within the past three years).16

(a) Quantify mental health as well = 1, mild = 2, moderate = 3, and impaired = 4

and estimate an ordinal logit model based on these data.

(b) Now reverse the order of mental health as 1 for impaired, 2 for moderate, 3

for mild, and 4 for well and reestimate the OLM.

Compare the two models and find out if how we order the response variables makes a

difference.

Appendix

Derivation of Eq. (10.4)

The cumulative probability of the logit model can be written as:
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Taking logs on both sides of (2), we obtain Eq. (10.7).
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16 These data are from Alan Agresti, op cit., Table 6.9, p. 186.



11
Limited dependent variable regression

models

In the logit and probit models we discussed previously the dependent variable assumed

values of 0 and 1, 0 representing the absence of an attribute and 1 representing the pres-

ence of that attribute, such as smoking or not smoking, or owning a house or not owning

one, or belonging or not belonging to a union. As noted, the logit model uses the logistic

probability distribution and the probit the normal distribution. We saw in Chapter 8

how one estimates and interprets such models, using the example of cigarette smoking.

But now consider this problem: how many packs of cigarettes does a person smoke,

given his or her socio-economic variables? Now this question is meaningful only if a

person smokes; a nonsmoker may have no interest in this question. In our smoker ex-

ample discussed in Chapter 8 we had a sample of 1,196 people, of which about 38%

smoked and 62% did not smoke. Therefore we can obtain information about the

number of packs smoked for only about 38% of the people in the sample.

Suppose we only consider the sample of smokers and try to estimate a demand

function for the number of packs of cigarettes smoked per day based on socio-eco-

nomic information of the smokers only. How reliable will this demand function be if

we omit 62% of the people in our sample of 1,196? As you might suspect, such a

demand function may not be reliable.

The problem here is that we have a censored sample, a sample in which informa-

tion on the regressand is available only for some observations but not all, although we

may have information on the regressors for all the units in the sample. It may be noted

that the regressand can be left-censored (i.e. it cannot take a value below a certain

threshold, typically, but not always, zero) or it may be right-censored (i.e. it cannot

take a value above a certain threshold, say, people making more than one million dol-

lars of income), or it can be both left- and right-censored.

A closely related but somewhat different model from the censored sample model is

the truncated sample model, in which information on both the regressand and

regressors is not available on some observations. This could be by design, as in the

New Jersey negative income tax experiment where data for those with income higher

than 1.5 times the 1967 poverty line income were not included in the sample.1

Like the censored sample, the truncated sample can be left-censored, right-cen-

sored or both right- and left-censored.
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1 See J. A. Hausman and D. A. Wise, Social Experimentation, NBER Economic Research Conference

Report, University of Chicago Press, Chicago, 1985.



How then do we estimate such models, which are also known as limited dependent

variable regression models because of the restriction put on the values taken by the

regressand? Initially we will discuss the censored regression model and then discuss

briefly the truncated regression model. As in the various models in this book, our em-

phasis will be on practical applications.

11.1 Censored regression models

A popularly used model in these situations is the Tobit model, which was originally

developed by James Tobin, a Nobel laureate economist.2 Before we discuss the Tobit

model, let us first discuss OLS (ordinary least squares) applied to a censored sample.

See Table 11.1, available on the companion website.

OLS estimation of censored data

For this purpose we use the data collected by Mroz.3 His sample gives data on 753 mar-

ried women, 428 of whom worked outside the home and 325 of whom did not work

outside the home, and hence had zero hours of work.

Some of the socio-economic variables affecting the work decision considered by

Mroz are age, education, experience, squared experience, family income, number of

kids under age 6, and husband’s wage. Table 11.1 gives data on other variables consid-

ered by Mroz.

Applying OLS to hours of work in relation to the socio-economic variables for all

the observations, we obtained the results in Table 11.2.

The results in this table are to be interpreted in the framework of the standard linear

regression model. As you know, in the linear regression model each slope coefficient

gives the marginal effect of that variable on the mean or average value of the dependent

variable, holding all other variables in the model constant. For example, if husband’s

wages go up by a dollar, the average hours worked by married women declines by

about 71 hours, ceteris paribus. Except for education, all the other coefficients seem to

be highly statistically significant. But beware of these results, for in our sample 325

married women had zero hours of work.

Suppose, instead of using all observations in the sample, we only use the data for 428

women who worked. The OLS results based on this (censored) sample are given in

Table 11.3.

If you compare the results in Tables 11.2 and 11.3, you will see some of the obvi-

ous difference between the two.4 The education variable now seems to be highly

significant, although it has a negative sign. But we should be wary about these re-

sults also.

This is because OLS estimates of censored regression models, whether we include

the whole sample (Figure 11.1) or a subset of the sample (Figure 11. 2), are biased as
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2 James Tobin (1958) Estimation of Relationship for Limited Dependent Variables. Econometrica, vol. 26,

pp. 24–36.

3 See T. A. Mroz, (1987) The sensitivity of an empirical model of married women’s hours of work to

economic and statistical assumptions. Econometrica, vol. 55, pp. 765–99. Recall that we used these data in

Chapter 4 while discussing multicollinearity.

4 In the traditional regression model the mean value of the error term ui is is assumed to be zero, but

there is no guarantee that this will be the case if we only use a subset of the sample values, as in this example.
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Dependent Variable: HOURS
Method: Least Squares
Sample: 1 753
Included observations: 753

Coefficient Std. Error t-Statistic Prob.

C 1298.293 231.9451 5.597413 0.0000

AGE –29.55452 3.864413 –7.647869 0.0000

EDUC 5.064135 12.55700 0.403292 0.6868

EXPER 68.52186 9.398942 7.290380 0.0000

EXPERSQ –0.779211 0.308540 –2.525480 0.0118

FAMINC 0.028993 0.003201 9.056627 0.0000

KIDSLT6 –395.5547 55.63591 –7.109701 0.0000

HUSWAGE –70.51493 9.024624 –7.813615 0.0000

R-squared 0.338537 Mean dependent var 740.5764
Adjusted R-squared 0.332322 S.D. dependent var 871.3142
S.E. of regression 711.9647 Akaike info criterion 15.98450
Sum squared resid 3.78E+08 Schwarz criterion 16.03363
Log likelihood –6010.165 Hannan–Quinn criter. 16.00343
F-statistic 54.47011 Durbin–Watson stat 1.482101
Prob(F-statistic) 0.000000

Table 11.2 OLS estimation of the hours worked function.

Dependent Variable: HOURS
Method: Least Squares
Sample: 1 428
Included observations: 428

Coefficient Std. Error t-Statistic Prob.

C 1817.334 296.4489 6.130345 0.0000

AGE –16.45594 5.365311 –3.067100 0.0023

EDUC –38.36287 16.06725 –2.387644 0.0174

EXPER 49.48693 13.73426 3.603174 0.0004

EXPERSQ –0.551013 0.416918 –1.321634 0.1870

FAMINC 0.027386 0.003995 6.855281 0.0000

KIDSLT6 –243.8313 92.15717 –2.645821 0.0085

HUSWAGE –66.50515 12.84196 –5.178739 0.0000

R-squared 0.218815 Mean dependent var 1302.930
Adjusted R-squared 0.205795 S.D. dependent var 776.2744
S.E. of regression 691.8015 Akaike info criterion 15.93499
Sum squared resid 2.01E+08 Schwarz criterion 16.01086
Log likelihood –3402.088 Hannan–Quinn criter. 15.96495
F-statistic 16.80640 Durbin–Watson stat 2.107803
Prob(F-statistic) 0.000000

Table 11.3 OLS estimation of hours function for working women only.
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Figure 11.1 Hours worked and family income, full sample.
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Figure 11.2 Hours vs. family income for working women.



well as inconsistent – that is, no matter how large the sample size is, the estimated pa-

rameters will not converge to their true values.5 The reason for this is the fact that in

censored as well as truncated regression models the conditional mean of the error

term, ut , is nonzero and the error is correlated with the regressors. As we know, if the

error term and the regressors are correlated, the OLS estimators are biased as well as

inconsistent.

To give a glimpse of why the OLS estimates may be biased as well as inconsistent,

we plot hours worked against family income in Figure 11.1 and hours worked and

family income only for working women in Figure 11.2.

In Figure 11.1 there are several observations (actually 325) that lie on the horizontal

axis because for these observations the hours worked are zero.

In Figure 11.2, none of the observations lie on the horizontal axis, for these observa-

tions are for 428 working women. The slope coefficients of the regression lines in the

two figures will obviously be different.

A popularly used model to deal with censored samples is the Tobit model, which we

now discuss.

11.2 Maximum likelihood (ML) estimation of the censored
regression model: the Tobit model

One of the popularly used censored sample regression model is the Tobit model.

There are several variants of the Tobit model, but we consider here the simplest one,

the so-called standard Tobit model.6 We will continue with the Mroz data.

To see how the censored observations are dealt with, we proceed as follows: Let

Y B B Age B Edu B Exp B Kids

B c B H

i i i i i

i

* � � � � �

� �

1 2 3 4 5

6 7

6

Famin uswage ui i�
(11.1)

where Yi
* are desired hours of work. Now

Y Y

Y Y

i i

i i

� �

� �

0 0

0

if *

* *if
(11.2)

where u Ni ~ ( , )0 2
 and where Yi are the realized or actual hours worked.7 The

regressors are, respectively, age in years, education in years of schooling, work experi-

ence in years, number of kids under age 6, family income in thousands of dollars, and

husband’s hourly wage.

The variable Yi
* is called a latent variable, the variable of primary interest. Of

course, we do not actually observe this variable for all the observations. We only
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5 For a rigorous proof, see Jeffrey M. Wooldridge, Introductory Econometrics: A Modern Approach,

South-Western, USA,4th edn, 2006, Ch. 17. See also Christiaan Heij, Paul de Boer, Philip Hans Franses,

Teun Kloek, and Herman K. van Dijk, Econometric Methods with Applications in Business and Economics,

Oxford University Press, Oxford, UK, 2004, Chapter 6.

6 A detailed, but somewhat advanced discussion can be found in A. Colin Cameron and Pravin K.

Trivedi, Microeconometrics: Methods and Applications, Cambridge University Press, New York, 2005,

Chapter 16.

7 One can use the logistic or the extreme value probability distribution in lieu of the normal distribution.



observe it for those observations with positive hours of work because of censoring.

Recall that we discussed the concept of latent variables in the previous chapter.8

Notice that we are assuming that the error term is normally distributed with zero

mean and constant (or homoscedastic) variance. We will have more to say about this

assumption later.

Before we proceed further, it is useful to note the difference between the probit

model and the Tobit model. In the probit model, Yi = 1 if Yi
* is greater than zero, and it

is equal to zero if the latent variable is zero. In the Tobit model Yi may take any value as

long as the latent variable is greater than zero. That is why the Tobit model is also

known as Tobin’s probit.

To estimate a model where some observations on the regressand are censored (be-

cause they are not observed), the Tobit model uses the method of maximum likeli-

hood (ML), which we have encountered on several occasions.9 The actual mechanics

of Tobit ML method is rather complicated, but Stata, Eviews and other software pack-

ages can estimate this model very easily.10

Using Eviews6 we obtained the results in Table 11.4 for our example.

Interpretation of the Tobit estimates

How do we interpret these results? If you only consider the signs of the various

regressors, you will see that they are the same in Tables 11.2 and 11.3. And qualita-

tively they make sense. For example, if the husband’s wages go up, on average, a

woman will work less in the labor market, ceteris paribus. The education variable is not

significant in Table 11.2, but it is in Table 11.3, although it has a negative sign. In Table

11.4 it is significant and has a positive sign, which makes sense.

The slope coefficients of the various variables in Table 11.4 give the marginal

impact of that variable on the mean value of the latent variable, Yi
*, but in practice we

are interested in the marginal impact of a regressor on the mean value of Yi , the actual

values observed in the sample.

Unfortunately, unlike the OLS estimates in Table 11.2, we cannot interpret the

Tobit coefficient of a regressor as giving the marginal impact of that regressor on the

mean value of the observed regressand. This is because in the Tobit type censored re-

gression models a unit change in the value of a regressor has two effects: (1) the effect

on the mean value of the observed regressand, and (2) the effect on the probability that

Yi
* is actually observed.11

Take for instance the impact of age. The coefficient for age of about –54 in Table

11.4 means that, holding other variables constant, if age increases by a year, its direct

impact on the hours worked per year will be a decrease by about 54 hours per year and

the probability of a married woman entering the labor force will also decrease. So we

have to multiply –54 by the probability that this will happen. Unless we know the

latter, we will not able to compute the aggregate impact of an increase in age on the

196 Regression models with cross-sectional data

8 In the present context we can interpret the latent variable as a married woman’s propensity or desire to

work.

9 There are alternative to ML estimation, some of which may be found in the book by Greene, op cit.

10 The details of Tobin’s ML method can be found in Christiaan Heij, op cit.

11 That is, � � � � � �[ | ]/ Pr( )* *Y X X B x Yi i i i i0 and the latter probability depends on all the regressors in

the model and their coefficients.



hours worked. And this probability calculation depends on all the regressors in the

model and their coefficients.

Interestingly, the slope coefficient gives directly the marginal impact of a regressor

on the latent variable, Yi
*, as noted earlier. Thus, the coefficient of the age variable of

–54 means if age increases by a year, the desired hours of work will decrease by 54

hours, ceteris paribus. Of course, we do not actually observe the desired hours of work,

for it is an abstract construct.

In our example we have 753 observations. It is a laborious task to compute the mar-

ginal impact of each regressor for all the 753 observations. In practice, one can com-

pute the marginal impact at the average value of each regressor.

Since the probability of Y * must lie between zero and one, the product of each slope

coefficient multiplied by this probability will be smaller (in absolute value) than the

slope coefficient itself. As a result, the marginal impact of a regressor on the mean

value of the observed regressand will be smaller (in absolute value) than indicated by

the value of the slope coefficient given in Table 11.4. The sign of the marginal impact

will depend on the sign of the slope coefficient, for the probability of observing Yi
* is

always positive. Packages like Stata and Eviews can compute the marginal impact of

each regressor.
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Dependent Variable: HOURS
Method: ML - Censored Normal (TOBIT) (Quadratic hill climbing)
Sample: 1 753
Included observations: 753
Left censoring (value) at zero
Convergence achieved after 6 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C 1126.335 379.5852 2.967279 0.0030

AGE –54.10976 6.621301 –8.172074 0.0000

EDUC 38.64634 20.68458 1.868365 0.0617

EXPER 129.8273 16.22972 7.999356 0.0000

EXPERSQ –1.844762 0.509684 –3.619422 0.0003

FAMINC 0.040769 0.005258 7.754009 0.0000

KIDSLT6 –782.3734 103.7509 –7.540886 0.0000

HUSWAGE –105.5097 15.62926 –6.750783 0.0000

Error Distribution
SCALE:C(9) 1057.598 39.06065 27.07579 0.0000
Mean dependent var 740.5764 S.D. dependent var 871.3142
S.E. of regression 707.2850 Akaike info criterion 10.08993
Sum squared resid 3.72E+08 Schwarz criterion 10.14520
Log likelihood –3789.858
Avg. log likelihood –5.033012
Left censored obs 325 Right censored obs 0
Uncensored obs 428 Total obs 753

Note: The scale factor is the estimated scale factor 
, which may be used to estimate the standard deviation of
the residual, using the known variance of the assumed distribution, which is 1 for the normal distribution, �2 3/
for the logistic distribution and �2 6/ for the extreme value (Type I) distribution.

Table 11.4 ML estimation of the censored regression model.



Statistical significance of the estimated coefficients

Table 11.4 presents the standard errors, the Z-statistics (standard normal distribution

values) and the p values of each estimated coefficient.12 As the table shows all the coef-

ficients are statistically significant at the 10% or lower level of significance.

For the Tobit model there is no conventional measure of R2. This is because the

standard linear regression model estimates parameters by minimizing the residual

sum of squares (RSS), whereas the Tobit model maximizes the likelihood function. But

if you want to compute an R2 equivalent to the conventional R2, you can do so by

squaring the coefficient of correlation between the actual Y values and the Y values es-

timated by the Tobit model.

The test of the omitted variables or superfluous variables can be conducted in the

framework of the usual large sample tests, such as the likelihood ratio, Wald, or

Lagrange Multiplier (L). Try this by adding the experience-squared variable to the

model or father’s education and mother’s education variables to the model.

Caveats

In the Tobit model it is assumed that the error term follows the normal distribution

with zero mean and constant variance (i.e. homoscedasticity).

Non-normality of error term
In the censored regression models under non-normality of the error term the estima-

tors are not consistent. Again, some remedial methods are suggested in the literature.

One is to change the error distribution assumption. For example, Eviews can estimate

such regression models under different probability distribution assumptions for the

error term (such as logistic and extreme value). For a detailed discussion, see the books

by Maddala and Wooldridge.13

Heteroscedasticity
In the usual linear regression model, if the error term is heteroscedastic, the OLS esti-

mators are consistent, though not efficient. In Tobit-type models, however, the esti-

mators are neither consistent nor efficient. There are some methods to deal with this

problem, but a detailed discussion of them would take us far afield.14 However, statis-

tical packages, such as Stata and Eviews, can compute robust standard errors, as shown

in Table 11.5.

As you can see, there are no vast differences in the estimated standard errors in the

two tables, but this need not always be the case.

198 Regression models with cross-sectional data

12 Because of the large sample size, we use the standard normal than the t distribution.

13 For detailed, but somewhat advanced, discussion, see G. S. Maddala, Limited Dependent and

Qualitative Variables in Econometrics, Cambridge University Press, Cambridge, UK, 1983, and Wooldridge,

J. M., Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, MA, 2002.

14 For an advanced discussion, see Maddala and Wooldridge, op cit.



11.3 Truncated sample regression models

Earlier we discussed the difference between censored and truncated sample regression

models. Having discussed the censored sample regression model, we now turn our at-

tention to truncated sample regression models.

In truncated samples if we do not have information on the regressand, we do not

collect information on the regressors that may be associated with the regressand. In

our illustrative example, we do not have data on hours worked for 325 women. There-

fore we may not consider information about socio-economic variables for these obser-

vations, even though we have that information on them in the current example.

Why, then, not estimate the hours function for the sub-sample of 428 working

women only using the method of OLS? As a matter of fact, we did that in Table 11.2.

However, the OLS estimators are inconsistent in this situation. Since the sample is

truncated, the assumption that the error term in this model is normally distributed

with mean� and variance 
2 distributed cannot be maintained. Therefore, we have to

use what is known as the truncated normal distribution. In that case we have to use a

nonlinear method of estimation, such as the ML method.

Using ML, we obtain the results in Table 11.6. If you compare these results with the

OLS results give in Table 11.2, you will see the obvious differences, although the signs

of the coefficients are the same.
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Dependent Variable: HOURS
Method: ML – Censored Normal (TOBIT) (Quadratic hill climbing)
Sample: 1 753
Included observations: 753
Left censoring (value) at zero
Convergence achieved after 6 iterations
QML (Huber/White) standard errors & covariance

Coefficient Std. Error z-Statistic Prob.

C 1126.335 386.3109 2.915618 0.0035

AGE –54.10976 6.535741 –8.279056 0.0000

EDUC 38.64634 20.30712 1.903094 0.0570

EXPER 129.8273 17.27868 7.513728 0.0000

EXPERSQ –1.844762 0.536345 –3.439505 0.0006

FAMINC 0.040769 0.005608 7.269982 0.0000

KIDSLT6 –782.3734 104.6233 –7.478004 0.0000

HUSWAGE –105.5097 16.33276 –6.460007 0.0000

Error Distribution
SCALE:C(9) 1057.598 42.80938 24.70482 0.0000
Mean dependent var 740.5764 S.D. dependent var 871.3142
S.E. of regression 707.2850 Akaike info criterion 10.08993
Sum squared resid 3.72E+08 Schwarz criterion 10.14520
Log likelihood –3789.858 Avg. log likelihood –5.033012
Left censored obs 325 Right censored obs 0
Uncensored obs 428 Total obs 753

Table 11.5 Robust estimation of the Tobit model.



If you compare the results of the censored regression given in Table 11.5 with the

truncated regression given in Table 11.6, you will again see differences in the magni-

tude and statistical significance of the coefficients. Notice particularly that the educa-

tion coefficient is positive in the censored regression model, but is negative in the

truncated regression model.

Interpretation of the truncated regression coefficients

As in the Tobit model, an individual regression coefficient measures the marginal

effect of that variable on the mean value of the regressand for all observations – that is,

including the non-included observations. But if we consider only the observations in

the (truncated) sample, then the relevant (partial) regression coefficient has to be mul-

tiplied by a factor which is smaller than 1. Hence, the within-sample marginal effect of

a regressor is smaller (in absolute value) than the value of the coefficient of that vari-

able, as in the case of the Tobit model.

Tobit vs. truncated regression model

Now, between censored and truncation regression models, which is preferable? Since

the Tobit model uses more information (753 observations) than the truncated
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Dependent Variable: HOURS
Method: ML – Censored Normal (TOBIT) (Quadratic hill climbing)
Sample (adjusted): 1 428
Included observations: 428 after adjustments
Truncated sample
Left censoring (value) at zero
Convergence achieved after 6 iterations
QML (Huber/White) standard errors & covariance

Coefficient Std. Error z-Statistic Prob.

C 1864.232 397.2480 4.692867 0.0000

AGE –22.88776 7.616243 –3.005125 0.0027

EDUC –50.79302 20.77250 –2.445205 0.0145

EXPER 73.69759 22.42240 3.286784 0.0010

EXPERSQ –0.954847 0.575639 –1.658761 0.0972

FAMINC 0.036200 0.006947 5.210857 0.0000

KIDSLT6 –391.7641 193.4270 –2.025385 0.0428

HUSWAGE –93.52777 19.11320 –4.893360 0.0000

Error Distribution
SCALE:C(9) 794.6310 56.36703 14.09744
0.0000
Mean dependent var 1302.930 S.D. dependent var 776.2744
S.E. of regression 696.4534 Akaike info criterion 15.78988
Sum squared resid 2.03E+08 Schwarz criterion 15.87524
Log likelihood –3370.035 Avg. log likelihood –7.873913
Left censored obs 0 Right censored obs 0
Uncensored obs 428 Total obs 428

Note: The standard errors presented in this table are robust standard errors.

Table 11.6 ML estimation of the truncated regression model.



regression model (428 observations), estimates obtained from Tobit are expected to

be more efficient.15

11.4 Summary and conclusions

In this chapter we discussed the nature of censored regression models. The key here is

the concept of a latent variable, a variable which, although intrinsically important,

may not always be observable. This results in a censored sample in which data on the

regressand is not available for several observations, although the data on the explana-

tory variables is available for all the observations.

In situations like this OLS estimators are biased as well as inconsistent. Assuming

that the error term follows the normal distribution with zero mean and constant vari-

ance, we can estimate censored regression models by the method of maximum likeli-

hood (ML). The estimators thus obtained are consistent.

The slope coefficients estimated by ML need to be interpreted carefully. Although

we can interpret the slope coefficient as giving the marginal impact of a variable on the

mean value of the latent variable, holding other variables constant, we cannot inter-

pret it so with respect to the observed value of the latent variable. Here we have to mul-

tiply the slope coefficient by the probability of observing the latent variable. And this

probability depends on all the explanatory variables and their coefficients. However,

modern statistical software packages do this relatively easily.

One major caveat is that the ML estimators are consistent only if the assumptions

about the error term are valid. In cases of heteroscedasticity and non-normal error

term, the ML estimators are inconsistent. Alternative methods need to be devised in

such situations. Some solutions are available in the literature. We can, however, com-

pute robust standard errors, as illustrated by a concrete example.

The truncated regression model differs from the censored regression model in that

in the former we observe values of the regressors only if we have data on the

regressand. In the censored regression model, we have data on the regressors for all

the values of the regressand including those values of the regressand that are not ob-

served or set to zero or some such limit.

In practice, censored regression models may be preferable to the truncated regres-

sion models because in the former we include all the observations in the sample,

whereas in the latter we only include observations in the truncated sample.

Finally, the fact that we have software to estimate censored regression models does

not mean that Tobit-type models are appropriate in all situations. Some of the situa-

tions where such models many not be applicable are discussed in the references cited

in this chapter.

Exercises

11.1 Include the Faminc-squared variable in both the censored and truncated regres-

sion models discussed in the chapter and compare and comment on the results.
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15 Technically, this is the result of the fact that the Tobit likelihood function is the sum of the likelihood

functions of truncated regression model and the probit likelihood function.



11.2 Expand the models discussed in this chapter by considering interaction effects,

for example, education and family income.

11.3 The data given in Table 11.1 includes many more variables than are used in the

illustrative example in this chapter. See if adding one or more variables to the model in

Tables 11.4 and 11.6 substantially alters the results given in these tables.
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12
Modeling count data: the Poisson and

negative binomial regression models

In many a phenomena the regressand is of the count type, such as the number of visits

to a zoo in a given year, the number of patents received by a firm in a year, the number

of visits to a dentist in a year, the number of speeding tickets received in a year, the

number of cars passing through a toll booth in a span of, say, 5 minutes, and so on. The

underlying variable in each case is discrete, taking only a finite non-negative number

of values.

Sometimes count data also include rare or infrequent occurrences, such as getting

hit by lightning in a span or a week, winning Mega Lotto in two successive weeks,

having one or more traffic accidents in a span of a day, and the number of appoint-

ments to the Supreme Court made by a President in a year. Of course, several more ex-

amples can be cited.

A unique feature of all these examples is that they take a finite number of non-nega-

tive integer, or count, values. Not only that, in many cases the count is 0 for several ob-

servations. Also note that each count example is measured over a certain finite time

period. To model such phenomena, we need a probability distribution that takes into

account the unique features of count data. One such probability distribution is the

Poisson probability distribution. Regression models based on this probability distribu-

tion are known as Poisson Regression Models (PRM). An alternative to PRM is the

Negative Binomial Regression Model (NBRM), which is based on the Negative bino-

mial probability distribution and is used to remedy some of the deficiencies of the

PRM. In what follows we first discuss the PRM and then consider the NBRM.

12.1 An illustrative example

Before we discuss the mechanics of PRM, let us consider a concrete example.

Patents and R&D expenditure

A topic of great interest to students of Industrial Organization is the nature of the rela-

tionship between the number of patents received and the expenditure on research and

development (R&D) by manufacturing firms. To explore this relationship, Table 12.1

(available on the companion website) gives data on the number of patents received

by a sample of 181 international manufacturing firms and the amount of their R&D
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expenditure for the year 1990.1 The table also gives dummy variables representing five

major industries – aerospace, chemistry, computers, machines and instruments, and

motor vehicles; food, fuel, metal and others being the reference category. Also given in

the table are country dummies for two major countries, Japan and USA, the compari-

son group being European countries. The R&D variable is expressed in logarithmic

form, as the figures for individual industries vary considerably.

If you examine the patent data you will see that they vary considerably, from a low of

0 to a high of 900. But most of them are at the lower end.

Our objective is to determine the influence of R&D, industry category and the two

countries on the mean or average number of patents received by the 181 firms.2 As a

starting point, and for comparative purposes, suppose we fit a linear regression model

(LRM), regressing patents, on the log of R&D (LR90), the five industry dummies and

the two country dummies. The OLS regression results are given in Table 12.2.

As expected, there is a positive relationship between the number of patents re-

ceived and R&D expenditure, which is highly statistically significant. Since the R&D

variable is in the logarithmic form and the patent variable is in the linear form, the

R&D coefficient of 73.17 suggests that if you increase R&D expenditure by 1%, the av-

erage number of patents received will increase by about 0.73, ceteris paribus.3

Of the industrial dummies, only the dummies for the chemistry and vehicles indus-

tries are statistically significant: Compared to the reference category, the average level

of patents granted in the chemistry industry is higher by 47 patents and the average

level of patents granted in the vehicles industry is lower by 192. Of the country dum-

mies, the US dummy is statistically significant, but its value of about –77 suggests that

on average US firms received 77 fewer patents than the base group.

The OLS regression, however, may not be appropriate in this case because the

number of patents granted per firm per year is usually small, despite some firms ob-

taining a large number of patents. This can be seen more vividly if we tabulate the raw

data (Table 12.3).

It is clear from this table that a preponderance of firms received fewer than 200 pat-

ents; actually much fewer than this number. This can also be seen from the following

histogram of Figure 12.1.

This histogram shows the highly skewed distribution of the patent data, which can

be confirmed by the coefficient of skewness, which is about 3.3, and the coefficient of

kurtosis is about 14. Recall that for a normally distributed variable the skewness coeffi-

cient is zero and kurtosis is 3. The Jarque–Bera (JB) statistic clearly rejects the hypoth-

esis that patents are normally distributed. Recall that in large samples the JB static

follows the chi-square distribution with 2 df. In the present case the estimated JB value

of 1,308 is so large that the probability of obtaining such a value or greater is practically

zero.
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1 These data are obtained from the website of Marno Verbeek, A Guide to Modern Econometrics, 3rd edn,

Join Wiley & Sons, UK, 2008, but the original source is: M. Cincera, Patents, R&D, and technological

spillovers at the firm level: some evidence from econometric count models for panel data. Journal of Applied

Econometrics, vol. 12, pp. 265–80, 1997. The data can be downloaded from the archives of the Journal of

Applied Econometrics.

2 Recall that in most regression analysis we try to explain the mean value of the regressand in relation to

the explanatory variables or regressors.

3 Recall our discussion of semi-log models in Chapter 2.



Obviously, we cannot use the normal probability distribution to model count data.

The Poisson probability distribution (PPD) is often used to model count data, espe-

cially to model rare or infrequent count data. How this is done is explained below.
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Dependent Variable: P90
Method: Least Squares
Sample: 1 181
Included observations: 181

Coefficient Std. Error t-Statistic Prob.

C –250.8386 55.43486 –4.524925 0.0000

LR90 73.17202 7.970758 9.180058 0.0000

AEROSP –44.16199 35.64544 –1.238924 0.2171

CHEMIST 47.08123 26.54182 1.773851 0.0779

COMPUTER 33.85645 27.76933 1.219203 0.2244

MACHINES 34.37942 27.81328 1.236079 0.2181

VEHICLES –191.7903 36.70362 –5.225378 0.0000

JAPAN 26.23853 40.91987 0.641217 0.5222

US –76.85387 28.64897 –2.682605 0.0080

R-squared 0.472911 Mean dependent var 79.74586
Adjusted R-squared 0.448396 S.D. dependent var 154.2011
S.E. of regression 114.5253 Akaike info criterion 12.36791
Sum squared resid 2255959. Schwarz criterion 12.52695
Log likelihood –1110.296 Durbin–Watson stat 1.946344
F-statistic 19.29011 Prob(F-statistic) 0.000000

Note: P(90) is the number of patents received in 1990 and LR(90) is the log of R&D
expenditure in 1990. Other variables are self-explanatory.

Table 12.2 OLS estimates of patent data.

Tabulation of P90
Sample: 1 181
Included observations: 181
Number of categories: 5

Cumulative Cumulative

# Patents Count Percent Count Percent

[0, 200) 160 88.40 160 88.40

[200, 400) 10 5.52 170 93.92

[400, 600) 6 3.31 176 97.24

[600, 800) 3 1.66 179 98.90

[800, 1000) 2 1.10 181 100.00

Total 181 100.00 181 100.00

Table 12.3 Tabulation of patent raw data.



12.2 The Poisson regression model (PRM)

If a discrete random variable Y follows the Poisson distribution, its probability density

function (PDF) is given by

f Y y Y y
y

yi i
i

y

i
i

i i
( | ) Pr( )

!
, , , . . .� � � �

�e � �
012 (12.1)

where f Y yi( | ) denotes the probability that the discrete random variable Y takes

non-negative integer value yi , and where yi! (read as yi factorial) stands for y! =

y y y+ � + � + + +( ) ( )1 2 2 1� with 0! = 1 and where � is the parameter of the Poisson dis-

tribution. Note that the Poisson distribution has a single parameter, �, unlike a normal

distribution which has two parameters, mean and variance.

It can be proven that

E yi i( ) � � (12.2)

var( )yi i� � (12.3)

A unique feature of the Poisson distribution is that the mean and the variance of a

Poisson-distributed variable are the same. This property, which is known as

equidispersion, is a restrictive feature of the Poisson distribution, for in practice the

variance of count variables is often greater than its mean. The latter property is called

overdispersion.

The Poisson regression model can be written as:

y E y u ui i i i i� � � �( ) � (12.4)

where the ys are independently distributed as Poisson random variables with mean �i

for each individual, expressed as

�i i i i k kiE y X B B X B X� � � � � �( | ) exp[ ] exp( )1 2 2 � BX (12.5)
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Mean 79.74586
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Std. Dev. 154.2011
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Kurtosis 14.44027

Jarque–Bera 1308.452

Probability 0.000000

Figure 12.1 Histogram of raw data.



where exp(BX) means e raised to the power of the expression BX, the latter being a

short-hand for the multiple regression shown in the brackets.

The X variables are the regressors that might determine the mean value of the

regressand. Therefore, ipso facto, it also determines the variance value if the Poisson

model is appropriate. For example, if our count variable is the number of visits to the

Bronx Zoo in New York in a given year, this number will depend on variables such as

income of the visitor, admission price, distance from the museum, and parking fees.

Taking the exponential of BX will guarantee that the mean value of the count vari-

able, �, will be positive.

For estimation purposes, our model can be written as

Pr[ | ]
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(12.6)

This model is nonlinear in parameters, necessitating nonlinear regression estimation.

This can be accomplished by the method of maximum likelihood (ML). We will not

discuss the details of ML estimation in the context of the Poisson regression model, for

the details are somewhat technical and can be found in the references.4 However, a

heuristic discussion of ML is given in the appendix to Chapter 1.

We first present the ML estimates of the patent data and then discuss the results

and some of the limitations of the model; see Table 12.4.

The estimated mean value of the ith firm is therefore:

� exp[ . . . .
^

�i
BX

i iLR Aerosp Chemi� � � � � �e 074 086 90 079 077 st

Computer Machines Vehicles
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A log-transformation of Eq. (12.7) gives:
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� � �

�

0 46 0 64 150

0 0038
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J
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(12.8)

Interpretation of the results

First, notice that in nonlinear models like PRM the R2 is not particularly meaningful. It

is the LR, the likelihood ratio, statistic that is important. Its value in the present in-

stance is 21,482, which is highly significant because its p value, or exact level of signifi-

cance, is practically zero. This suggests that the explanatory variables are collectively

important in explaining the conditional mean of patents, which is �i .

Another way of stating this is to compare the restricted log-likelihood with the un-

restricted log-likelihood function. The former is estimated under the hypothesis that
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4 An accessible reference is: J. Scott Long, Regression Models for Categorical and Limited Dependent

Variables, Sage Publications, Thousand Oaks, California, 1997.



there are no explanatory variables in the model except the constant term, whereas the

latter includes the explanatory variables. Since the restricted LR is –15,822 and the un-

restricted LR is –5,081, numerically the latter is greater (i.e. less negative) than the

former.5 Since the objective of ML is to maximize the likelihood function, we should

choose the unrestricted model, that is, the model that includes the explanatory vari-

ables include in the above table.

Now let us interpret the estimated coefficients given in Eq. (12.8). The LR90 coeffi-

cient of 0.86 suggests that if R&D expenditure increases by 1%, the average number of

patents given a firm will increase by about 0.86%. (Note that R&D expenditure is ex-

pressed in logarithmic form.) In other words, the elasticity of patents granted with re-

spect to R&D expenditure is about 0.86% (see Eq. (12.8)).

What is the interpretation of the machines dummy coefficient of 0.6464? From

Chapter 2 we know how to interpret the dummy coefficient in a semi-log model. The

average number of patents in the machines industry is higher by

100 1 100 19086 1 90860 6464[ ] ( . ) . %.e � � � � compared to the comparison category. In
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Dependent Variable: P90
Method: ML/QML – Poisson Count (Quadratic hill climbing)
Sample: 1 181
Included observations: 181
Convergence achieved after 6 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C –0.745849 0.062138 –12.00319 0.0000

LR90 0.865149 0.008068 107.2322 0.0000

AEROSP –0.796538 0.067954 –11.72164 0.0000

CHEMIST 0.774752 0.023126 33.50079 0.0000

COMPUTER 0.468894 0.023939 19.58696 0.0000

MACHINES 0.646383 0.038034 16.99479 0.0000

VEHICLES –1.505641 0.039176 –38.43249 0.0000

JAPAN –0.003893 0.026866 –0.144922 0.8848

US –0.418938 0.023094 –18.14045 0.0000

R-squared 0.675516 Mean dependent var 79.74586
Adjusted R-squared 0.660424 S.D. dependent var 154.2011
S.E. of regression 89.85789 Akaike info criterion 56.24675
Sum squared resid 1388804. Schwarz criterion 56.40579
Log likelihood –5081.331 LR statistic 21482.10
Restr. log likelihood –15822.38 Prob(LR statistic) 0.000000
Avg. log likelihood –28.07365

Note: LR90 is the logarithm of R&D expenditure in 1990.

Table 12.4 Poisson model of patent data (ML estimation).

5 As shown in the Appendix to Chapter 1, the LR statistic � is computed as 2(ULLF – RLLF), where ULLF

and RLLF are the unrestricted and restricted log-likelihood functions. The LR statistic follows the

chi-square distribution with df equal to the number of restrictions imposed by the null hypothesis: seven in

the present example. For our example, � � 2[–5081 – (–15,822)] = 21,482.10, which is the value in Table

12.4.



similar fashion, the coefficient of the US dummy of –0.4189 means the average

number of patents in the USA is lower by 100 1 100 0 6577 1 34230 4189[ ] ( . ) . %.e� � � � � �
compared to the base group.

If you examine the results given in Table 12.4, you will see that, except for the Japan

dummy, the other variables are highly statistically significant.

Marginal impact of a regressor

Another way to interpret these results is to find the marginal impact of a regressor on

the mean value of the count variable, the number of patents in our example.

It can be shown that the marginal impact of a continuous regressor, say, Xk, on this

mean value is:

�

�
� �

E y X

X
B E y X B

i k

k

BX
k i k k

( | )
( | )e (12.9)6

As Eq. (12.9) shows, the marginal impact of the regressor Xk depends not only on its

coefficient Bk but also on the expected value of Y (= P90), which depends on the values

of all the regressors in the model. Since we have 181 observations, we will have to do

this calculation for each observation. Obviously this is a laborious task. In practice, the

marginal impact is computed at the mean values of the various regressors. Stata and

other statistical packages have routines to compute the marginal impact of continuous

regressors.

How about computing the marginal impact of a dummy regressor?

Since a dummy variable takes a value of 1 and zero, we cannot differentiate �i with

respect to the dummy variable. However, we can compute the percentage change in

mean patents obtained by considering the model when the dummy variable takes the

value of 1 and when it takes the value of 0.7

Computing the estimated probabilities

How do we compute the probability of obtaining, say, m patents, given the values of

the regressors? This probability can be obtained from Eq. (12.6) as:

Pr( | )
exp( � )�

!
, , , , . . .Y m X

m
mi

i i
m

� �
�

�
� �

0 1 2 (12.10)

where � ^� � BX.

In principle we can compute such probabilities for each observation for each value

m or for an m of particular interest. Of course, this is a tedious computation. Software

such as Stata can compute these probabilities relatively easily.

12.3 Limitation of the Poisson regression model

The Poisson regression results for the patent and R&D given in Table 12.4 should not

be accepted at face value. The standard errors of the estimated coefficients given in
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6 Using the chain rule of calculus, we obtain: � � � � � � � �E Y X X XB XB X Bk
XB

k
XB

k( | )/ ( / ) ( / )e e� . Remember

that the derivative of an exponential function is the exponential function itself.

7 For details, consult Long, op cit.



that table are valid only if the assumption of the Poisson distribution underlying the

estimated model is correct. Since the PPD assumes that the conditional mean and the

conditional variance of the distribution, given the values of the X regressors, are the

same, it is critical that we check this assumption: the assumption of equidispersion.

If there is overdispersion, the PRM estimates, although consistent are inefficient

with standard errors that are downward biased. If this is the case, the estimated Z

values are inflated, thus overestimating the statistical significance of the estimated co-

efficients.

Using a procedure suggested by Cameron and Trivedi, which is incorporated in

Eviews, the assumption of equidispersion can be tested as follows:

1 Estimate the Poisson regression model, as in Table 12.4, and obtain the predicted

value of the regressand, P i90
^

.

2 Subtract the predicted value P i90
^

from the actual value P90i, to obtain the residu-

als, ei = P Pi i90 90� ^
.

3 Square the residuals, and subtract from them P90i, i.e. e P ii
2 90� .

4 Regress the result from Step 3 on P i902^
.

5 If the slope coefficient in this regression is statistically significant, reject the as-

sumption of equidispersion. In that case reject the Poisson model.

6 If the regression coefficient in Step 5 is positive and statistically significant, there is

overdispersion. If it is negative, there is under-dispersion. In any case, reject the

Poisson model. However, if this coefficient is statistically insignificant you need

not reject the PRM.

Using this procedure, we obtained the results in Table 12.5. Since the slope coeffi-

cient in this regression is positive and statistically significant, we can reject the Poisson

assumption of equidispersion. Actually, the results show overdispersion.8 Therefore

the reported standard errors in Table 12.4 are not reliable; actually they underestimate

the true standard errors.

There are two ways of correcting the standard errors in Table 12.4: one by the

method of quasi-maximum likelihood estimation (QMLE) and the other by the
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Dependent Variable: (P90-P90F)^2-P90
Method: Least Squares
Sample: 1 181
Included observations: 181

Coefficient Std. Error t-Statistic Prob.

P90F^2 0.185270 0.023545 7.868747 0.0000

R-squared 0.185812 Mean dependent var 7593.204
Adjusted R-squared 0.185812 S.D. dependent var 24801.26
S.E. of regression 22378.77 Akaike info criterion 22.87512
Sum squared resid 9.01E+10 Schwarz criterion 22.89279
Log likelihood –2069.199 Durbin–Watson stat 1.865256

Note: P90F is the predicted value of P90 from Table 12.4 and P90F^2 = P90F squared.

Table 12.5 Test of equidispersion of the Poisson model.

8 This test is also valid for underdispersion, in which case the slope coefficient will be negative. That is,

the conditional variance is less than the conditional mean, which also violates the Poisson assumption.



method of generalized linear model (GLM). The mathematics behind these methods

is complicated, so we will not pursue it. But we will report the standard errors com-

puted by these two methods along with the standard errors reported in Table 12.4 so

the reader can see the differences in the estimated standard errors. In all cases the esti-

mates of the regression coefficients remain the same, as in Table 12.4.

But before we do that, it may be noted that even though QMLE is robust to general

misspecification of the conditional distribution of the dependent variable, P90 in our

example, it does not possess any efficiency properties, whereas GLM directly corrects

for overdispersion and may therefore be more dependable.

As you can see from Table 2.6, the standard errors shown in Table 12.4, which are

obtained by the method of maximum likelihood, underestimate the standard errors

substantially, and thereby inflate the estimated Z values a great deal. The other two

methods show that in several cases the regressors are statistically insignificant, thus

showing the extent to which MLE underestimated the standard errors.

The main point to note is that if one uses the Poisson Regression Model it should be

subjected to overdispersion test(s), as in Table 12.5. If the test shows overdispersion,

we should at least correct the standard errors by QMLE and GLM.

If the assumption of equidispersion underlying the PRM cannot be sustained,

and even if we correct the standard errors obtained by ML, as in Table 12.6, it might be

better to search for alternatives to PRM. One such alternative is the Negative Binomial
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Variable MLE SE
(Table12.4)

QMLE SE GLM SE

Constant 0.0621 0.6691 0.4890

(–12.0031) (–1.1145) (–1.5250)

LR90 0.0080 0.0847 0.0635

(107.2322) (10.2113) (13.6241)

ARROSP 0.0679 0.3286 0.5348

(–11.7210) (–2.42350) (–1.4892)

CHEMIST 0.0231 0.2131 0.1820

(33.5007) (3.6350) (4.2563)

COMPUTER 0.0239 0.2635 0.1884

(19.5869) (1.7791) (2.4885)

MACHINES 0.0380 0.3910 0.2993

(16.9947) (1.6568) (2.1592)

VEHICLES 0.0391 0.2952 0.3083

(–38.4324) (–5.0994) (–4.8829)

Japan 0.0268 0.3259 0.2114

(–0.1449) (–0.0119) (–0.0184)

US 0.0230 0.2418 0.1817

(–18.1405) (–1.7318) (–2.3047)

Note: Figures in parentheses are the estimated Z values.

Table 12.6 Comparison of MLE, QMLE and GLM standard errors (SE) of the

patent example.



Regression Model (NBRM), which is based on the Negative Binomial Probability Dis-

tribution (NBPD).9

12.4 The Negative Binomial Regression Model (NBRM)

The assumed equality between the mean and variance of a Poisson-distributed

random variable is a major shortcoming of the PRM. For the NBPD it can be shown

that


 �
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�2
2

0 0� � � �
r

r; , (12.11)

where 
2 is the variance, � is the mean and r is a parameter of the model.10

Equation (12.11) shows that for the NBPD the variance is always larger than the

mean, in contrast to the Poisson PDF in which mean equals variance. It is worth

adding that as r & � and p &1the NBPD approaches the Poisson PDF, assuming the

mean � stays constant. Note: p is the probability of success.

Because of the property (12.11), NBPD is more suitable to count data than the PPD.

Using Eviews6 we obtained Table 12.7. If you compare these results of the negative

Binomial regression given in Table 12.7 with those of the Poisson regression in Table

12.4, you will again see the differences in the estimated standard errors.

Incidentally, the shape parameter given in the table gives an estimate of the extent

to which the conditional variance exceeds the conditional mean. The shape parameter

is equal to the natural log of the variance, ln �i . Taking the antilog of this, we obtain

1.2864, which suggests that the (conditional) variance is greater by about 0.28 than the

conditional mean.

12.5 Summary and conclusions

In this chapter we discussed the Poisson regression model which is often used to

model count data. The PRM is based on the Poisson probability distribution. A unique

feature of the PPD is that the mean of a Poisson variable is the same as its variance.

This is also a restrictive feature of PPD.

We used patent data for 181 manufacturing firms for 1990 on the number of pat-

ents each firm received along with information on the R&D expenditure incurred by

these firms, the industry in which these firms operate (represented by dummy vari-

ables) and dummies for two major countries, Japan and USA.

Being a nonlinear model, we estimated PRM by the method of maximum likeli-

hood. Except for the Japan dummy, all the other variables were statistically significant.

But these results may not be reliable because of the restrictive assumption of the

PPD that its mean and variance are the same. In most practical applications of PRM

the variance tends to be greater than the mean. This is the case of overdispersion.
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9 Consult any standard textbook on probability to learn more about the negative binomial probability

distribution. Suffice it to say here that in the binomial probability distribution we look for the number of

successes, r, in n trials, where the probability of success is p. In the negative binomial probability distribution

we look for the number of failures before the rth success in n trials, where the probability of success is p.

10 For the NBPD the parameters are p (the probability of success) and r (the number of successes), the

same parameters as that of the Binomial PDF.



We used a test suggested by Cameron and Trivedi to test for overdispersion and

found that for our data there indeed was overdispersion.

To correct for overdispersion, we used the methods of Quasi Maximum Likelihood

Estimation (QMLE) and Generalized Linear Model (GLM). Both these methods cor-

rected the standard errors of the PRM, which was estimated by the method of maxi-

mum likelihood (ML). As a result of these corrections, it was found that several

standard errors in the PRM were severely underestimated, resulting in the inflated sta-

tistical significance of the various regressors. In some cases, the regressors were found

to be statistically insignificant, in strong contrast with the original PRM estimates.

Since our results showed overdispersion, we used an alternative model, the Nega-

tive Binomial Regression Model (NBRM). An advantage of NBRM model is that it

allows for overdispersion and also provides a direct estimation of the extent of overes-

timation of the variance. The NBRM results also showed that the original PRM stan-

dard errors were underestimated in several cases.

Exercises

12.1 Table 12.1 also gives data on patents and other variables for the year 1991. Repli-

cate the analysis discussed in this chapter using the data for 1991.
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Dependent Variable: P90
Method: ML – Negative Binomial Count (Quadratic hill climbing)
Sample: 1 181
Included observations: 181
Convergence achieved after 6 iterations
Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C –0.407242 0.502841 –0.809882 0.4180

LR90 0.867174 0.077165 11.23798 0.0000

AEROSP –0.874436 0.364497 –2.399022 0.0164

CHEMIST 0.666191 0.256457 2.597676 0.0094

COMPUTER –0.132057 0.288837 –0.457203 0.6475

MACHINES 0.008171 0.276199 0.029584 0.9764

VEHICLES –1.515083 0.371695 –4.076142 0.0000

JAPAN 0.121004 0.414425 0.291981 0.7703

US –0.691413 0.275377 –2.510791 0.0120

Mixture Parameter
SHAPE:C(10) 0.251920 0.105485 2.388217 0.0169
R-squared 0.440411 Mean dependent var 79.74586
Adjusted R-squared 0.410959 S.D. dependent var 154.2011
S.E. of regression 118.3479 Akaike info criterion 9.341994
Sum squared resid 2395063. Schwarz criterion 9.518706
Log likelihood –835.4504 Hannan–Quinn criter. 9.413637
Restr. log likelihood –15822.38 LR statistic 29973.86
Avg. log likelihood –4.615748 Prob(LR statistic) 0.000000

Table 12.7 Estimation of the NBRM of patent data.



12.2 Table 12.8 (see the companion website) gives data on the extramarital affairs of

601 people and is obtained from Professor Ray Fair’s website:

http://fairmodel.econ.yale.edu/rayfair/pdf/1978ADAT.ZIP. The data consists of:

y = number of affairs in the past year

z1 = sex

z2 = age

z3 = number of years married

z4 = number of children

z5 = religiousness

z6 = education

z7 = occupation

z8 = self-rating of marriage

See if the Poisson and/or Negative Binomial Regression Model fits the data and com-

ment on your results.

12.3 Use the data in Table 12.1. What is the mean number of patents received by a

firm operating in the computer industry in the USA with an LR value of 4.21? (Hint:

Use the data in Table 12.4). For your information, a firm with these characteristics in

our sample had obtained 40 patents in 1990.

214 Regression models with cross-sectional data



IV
Topics in time series econometrics

13 Stationary and nonstationary time series

14 Cointegration and error correction models

15 Asset price volatility: the ARCH and GARCH models

16 Economic forecasting

17 Panel data regression models

18 Survival analysis

19 Stochastic regressors and the method of instrumental

variables

215



13
Stationary and nonstationary time series

In regression analysis involving time series data, a critical assumption is that the time

series under consideration is stationary. Broadly speaking, a time series is stationary if

its mean and variance are constant over time and the value of covariance between two

time periods depends only on the distance or gap between the two periods and not the

actual time at which the covariance is computed.1

A time series is an example of what is called a stochastic process, which is a se-

quence of random variables ordered in time.2

13.1 Are exchange rates stationary?

To explain what all this means, we consider a concrete economic time series, namely

the exchange rate between the US dollar and the euro (EX), defined as dollars per unit

of euro. The exchange rate data are daily from 4 January 2000 to 8 May 2008, for a total

of 2,355 observations. These data are not continuous, for the exchange rate markets

are not always open every day and because of holidays. These data are provided in

Table 13.1, which can be found on the companion website.

In Figure 13.1 we have shown the log of the daily dollar/euro exchange rate (LEX).

The idea behind plotting the log of the exchange rate instead of the exchange rate is

that the change in the log of a variable represents a relative change (or rate of return),

whereas a change in the variable itself represents an absolute change. For comparative

purposes, it is the former that is generally more interesting.

A look at this figure suggests that the LEX series is not stationary, for it is generally

drifting upward, albeit with a great deal of variation. This would suggest that neither

the mean nor the variance of this time series is stationary. More formally, a time series

is said to be stationary if its mean and variance are constant over time and the value of

the covariance between two time periods depends only on the distance between the two
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1 A time series with these characteristics is known as weakly or covariance stationary. A time series is

strictly stationary if all moments of its probability distribution and not just the first two (i.e. mean and

variance) are invariant over time. If, however, the stationary process is normal, the weakly stationary

stochastic process is also strictly stationary, for the normal process is fully specified by its two moments,

mean and variance.

2 The term “stochastic” comes from the Greek word stokhos, which means a target or bull’s-eye. Anyone

who throws darts at a dartboard knows that the process of hitting the bull’s eye is a random process; out of

several darts, a few will hit the bull, but most of them will be spread around it in a random fashion.



time periods and not the actual time at which the covariance is computed. Such a time

series is known as weakly stationary or covariance stationary.3

13.2 The importance of stationary time series

Why should we worry whether a time series is stationary or not? There are several rea-

sons. First, if a time series is nonstationary, we can study its behavior only for the

period under consideration, such as the one in our dollar/euro exchange rate. Each

time series will therefore be a particular episode. As a result, it is not possible to gener-

alize it to other time periods. For forecasting purposes, therefore, nonstationary time

series will be of little practical value.

Second, if we have two or more nonstationary time series, regression analysis in-

volving such time series may lead to the phenomenon of spurious or nonsense regres-

sion. That is, if you regress a nonstationary time series on one or more nonstationary

time series, you may obtain a high R2 value and some or all of the regression coeffi-

cients may be statistically significant on the basis of the usual t and F tests. Unfortu-

nately, in cases of nonstationary time series these tests are not reliable, for they assume

that the underlying time series are stationary. We will discuss the topic of spurious re-

gression in some detail in the next chapter.
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Figure 13.1 LEX: the logarithm of the dollar/euro daily exchange rate.

3 As noted earlier, it is said to be strictly stationary if all the moments of its probability distribution and

not just the mean and variance are time invariant.



13.3 Tests of stationarity

For the reasons just stated, it is important to find out if a time series is stationary.

There are basically three ways to examine the stationarity of a time series: (1) graphical

analysis, (2) correlogram, and (3) unit root analysis. We discuss the first two in this sec-

tion and take up the last one in the next section.

Graphical analysis

A rough and ready method of testing for stationarity is to plot the time series, as we

have done in Figure 13.1. Very often such an informal analysis will give some initial

clue whether a given time series is stationary or not. Such an intuitive feel is the start-

ing point of more formal tests of stationarity. And it is worth remembering that

“Anyone who tries to analyse a time series without plotting it first is asking for trou-

ble”.4

Autocorrelation function (ACF) and correlogram

Figure 13.2 plots LEX at time t against its value lagged one period. This figure shows

very high correlation between current LEX and LEX lagged one day. But it is quite pos-

sible that correlation may persist over several days. That is, the current LEX may be

correlated with LEX lagged several days. To see how far back the correlation extends,

we can obtain the so-called autocorrelation function (ACF). The ACF at lag k is de-

fined as:
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Figure 13.2 Current vs. lagged LEX.

4 Chris Chatfield, The Analysis of Time Series: An Introduction, 6th edn, Chapman & Hall/CRC Press,

2004, p. 6.
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In practice, we compute the ACF from a given sample, denoted as �� k , which is

based on the sample covariance at lag k and the sample variance. The actual formulae

need not detain us, for modern software packages compute them routinely.

The main practical question is about the length of the lag, k. We can use the Akaike

or Schwarz information criterion to determine the lag length.5 But a rule of thumb is

to compute ACF up to one-quarter to one-third the length of the time series. We have

2,355 observations. One quarter of this would be about 589 lags. We will not show the

ACF at all these lags, but consider only the first 30 lags to give you some idea about the

nature of the ACF. A plot of �� k against k, the lag length, is called the (sample)

correlogram. For the time being, neglect the column of partial correlation (PAC),

which we will need in Chapter 16 on time series forecasting.

For the dollar/euro exchange rate the correlogram is given in Table 13.2.

Before we proceed further, we should mention a special type of time series, namely

a purely random, or white noise, time series. Such a time series has constant mean,

constant (i.e. homoscedastic) variance, and is serially uncorrelated; its mean value is

often assumed to be zero. Recall that the error term ut entering the classical linear re-

gression model is assumed to be a white noise (stochastic) process, which we denoted

asu IIDt ~ ( , )0 2
 , that is ut is independently and identically distributed with zero mean

and constant variance. If in addition, ut is also normally distributed, it is called a

Gaussian white noise process. For such a time series the ACF at various lags hovers

around zero and the correlogram shows no discernible pattern.

Returning to our example, let us concentrate on the ACF column and its graphic

representation (i.e. correlogram) given in the first column. As you can see, even up to

30 days lag the correlation coefficient is very high, about 0.95. Not only that, the esti-

mated autocorrelation coefficients, � k , decline very slowly. This is in strong contrast

to the correlogram of a white noise time series (see Table 13.5).

We can test the statistical significance of each autocorrelation coefficient by com-

puting its standard error. The statistician Bartlett has shown that if a time series is

purely random, the sample autocorrelation, �� k , is approximately (i.e. in large samples)

distributed as follows:

� ~ ( , / )� N n01 (13.2)

That is, in large samples �� is approximately normally distributed with mean zero and

variance equal to one over the sample size. Our sample size is 2,355. Therefore, the

variance is 1/2,355 or about 0.00042 and the standard error is 0 00042 0 0206. .� .

Therefore, following the properties of the normal distribution, the 95% confidence in-

terval for � k is [ . ( . )]0 196 0 0206 or (–0.0404 to 0.0404).

None of the estimated correlations lies in this interval. Therefore we can conclude

that all the estimated autocorrelation coefficients shown in the table are statistically

significant. This conclusion does not change even if we compute ACF up to 150 lags!

This is a very strong indication that LEX is nonstationary.

Instead of assessing the statistical significance of an individual autocorrelation co-

efficient, we can also find out if the sum of autocorrelation coefficients squared is
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statistically significant. This can be done with the aid of the Q statistic developed by

Box and Pierce, which is defined as

Q n
k

k

m

�
�
	 ��2

1

(13.3)

where n is the sample size (2,355 in our example), and m is the total number of lags

used in calculating ACF, 30 in the present example. The Q statistic is often used to test

whether a time series is purely random, or white noise.

In large samples, Q is approximately distributed as the chi-square distribution with

m df. If in an application the computed Q value exceeds the critical Q value from the
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Autocorrelation Partial Correlation ACF PAC Q-Stat Prob

|******* |******* 1 0.998 0.998 2350.9 0.000

|******* | | 2 0.997 0.004 4695.7 0.000

|******* | | 3 0.995 –0.017 7034.2 0.000

|******* | | 4 0.994 0.012 9366.6 0.000

|******* | | 5 0.992 –0.014 11693. 0.000

|******* | | 6 0.991 0.012 14013. 0.000

|******* | | 7 0.989 –0.020 16326. 0.000

|******* | | 8 0.988 –0.018 18633. 0.000

|******* | | 9 0.986 0.006 20934. 0.000

|******* | | 10 0.984 0.001 23228. 0.000

|******* | | 11 0.983 0.001 25516. 0.000

|******* | | 12 0.981 –0.024 27796. 0.000

|******* | | 13 0.979 –0.019 30070. 0.000

|******* | | 14 0.978 –0.001 32337. 0.000

|******* | | 15 0.976 0.016 34597. 0.000

|******* | | 16 0.974 –0.007 36850. 0.000

|******* | | 17 0.973 –0.010 39097. 0.000

|******* | | 18 0.971 0.020 41336. 0.000

|******* | | 19 0.969 –0.011 43569. 0.000

|******* | | 20 0.968 –0.005 45795. 0.000

|******* | | 21 0.966 –0.006 48014. 0.000

|******* | | 22 0.964 0.006 50226. 0.000

|******* | | 23 0.963 –0.005 52431. 0.000

|******* | | 24 0.961 –0.016 54629. 0.000

|******* | | 25 0.959 –0.020 56820. 0.000

|******* | | 26 0.957 0.009 59003. 0.000

|******* | | 27 0.955 0.001 61179. 0.000

|******* | | 28 0.954 0.007 63349. 0.000

|******* | | 29 0.952 –0.009 65511. 0.000

|******* | | 30 0.950 0.012 67666. 0.000

Table 13.2 Sample correlogram of dollar/euro exchange rate.



chi-square distribution at the chosen level of significance, we can reject the null hy-

pothesis that the all the true � k are zero; at least some of them must be nonzero.

The last column of Table 13.1 gives the p (probability) value of Q. As the table

shows, the Q value up to 30 lags is 67,666 and the probability of obtaining such a Q

value is practically zero. That is, our time series is nonstationary.

To summarize, there is strong evidence that the dollar/euro time series is

nonstationary.

13.4 The unit root test of stationarity

Without going into the technicalities, we can express the unit root test for our

dollar/euro exchange rate as follows:6

�LEX B B t B LEX ut t t� � � ��1 2 3 1 (13.4)

where �LEX LEX LEXt t t� � �1, that is, the first difference of the log of the exchange

rate, t is the time or trend variable taking value of 1, 2, till the end of the sample, and ut

is the error term.

In words, we regress the first differences of the log of exchange rate on the trend

variable and the one-period lagged value of the exchange rate.

The null hypothesis is that B3, the coefficient of LEXt–1 is zero. This is called the unit

root hypothesis.7 The alternative hypothesis is: B3 0� .8 A nonrejection of the null hy-

pothesis would suggest that the time series under consideration is nonstationary.

It would seem that we can test the null hypothesis that B3 = 0 by the usual t test. Un-

fortunately, we cannot do that because the t test is valid only if the underlying time

series is stationary. However, we can use a test developed by statisticians Dickey and

Fuller, called the � (tau) test whose critical values are calculated by simulations and

modern statistical packages, such as Eviews and Stata, produce them routinely. In the

literature the tau test is know as the Dickey–Fuller (DF) test.

In practice we estimate Eq. (13.4) by OLS, look at the routinely calculated t value of

the coefficient of LEXt–1 (= B3), but use the DF critical values to find out if it exceeds

the DF critical value. If in an application the computed t (= tau) value of the estimated

B3 is greater (in absolute value) that the critical DF value, we reject the unit root hy-

pothesis – that is, we conclude that the time series under study is stationary. In that

case the conventional t test is valid. On the other hand, if it does not exceed the critical

tau value, we do not reject the hypothesis of unit root and conclude that the time series

is nonstationary. The reason for considering the absolute tau value is that in general

the coefficient B3 is expected to be negative.9

Let us return to our illustrative example. The results of estimating (13.4) are given

in Table 13.3.
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6 For an accessible discussion, see Gujarati/Porter, op cit., Chapter 21.

7 To see intuitively why the term unit root is used, we can proceed as follows: Let LEXt = B1 + B2t + C LEXt–1

+ ut. Now subtract LEXt–1 from both sides of this equation, which gives (LEXt – LEXt–1) = B1 + B2t +

C LEXt–1 – LEXt–1 + ut. Collecting terms, we obtain �LEX B B t B LEX ut t t� � � ��1 2 3 1 , where B3 = (C – 1).

If C = 1, B3 in regression (13.4) will be zero. Hence the name unit root.

8 We rule out the possibility that B3 > 0, for in that case C > 1, in which case the underlying time series is

explosive.

9 Note B C3 1� �( ). So if C < 1, B3 < 0.



Look at the coefficient of LEX lagged one period. Its t (=tau) value is –3.0265. If you

look at the conventionally computed p or probability value of this coefficient, it is

0.0025, which is very low. Hence you would be tempted to conclude that the estimated

coefficient of about –0.004 is statistically different from zero and so the US/EU time

series is stationary.10

However, the DF critical values are: –3.9619 (1% level), –3.4117 (5% level) and

–3.1277 (10% level). The computed t value is –3.0265. In absolute terms, 3.0265 is

smaller than any of DF critical t values in absolute terms. Hence, we conclude that the

US/EU time series is not stationary.

To put it differently, for us to reject the null hypothesis of unit root, the computed t

value of LEXt–1 must be more negative than any of the critical DF values. On the basis

of the DF critical value the probability of obtaining a tau (= t) value of –3.0265 is about

12%. As can be seen from the preceding table, the conventional t statistic shows that

–3.0264 is significant at the 0.0025 level. It is evident that the conventionally com-

puted significance level of the estimated t value can be very misleading when it is ap-

plied to a time series which is nonstationary.

Some practical aspects of the DF test

The DF test can be performed in three different forms:

Random walk:%LEX B LEX ut t t� ��3 1 (13.5)

Random walk with drift:%LEX B B LEX ut t t� � ��1 3 1 (13.6)

Random walk with drift around a deterministic trend:

%LEX B B t B LEX ut t t� � � ��1 2 3 1

(13.7)
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Dependent Variable: %(LEX)
Method: Least Squares
Date: 11/24/08 Time: 17:00
Sample (adjusted): 2 2355
Included observations: 2354 after adjustments

Coefficient Std. Error t-Statistic Prob.

C –0.000846 0.000292 –2.897773 0.0038

t 1.21E–06 3.22E–07 3.761595 0.0002

LEX(–1) –0.004088 0.001351 –3.026489 0.0025

R-squared 0.005995 Mean dependent var 0.000113
Adjusted R-squared 0.005149 S.D. dependent var 0.005926
S.E. of regression 0.005911 Akaike info criterion –7.422695
Sum squared resid 0.082147 Schwarz criterion –7.415349
Log likelihood 8739.512 Durbin–Watson stat 1.999138
F-statistic 7.089626 Prob(F-statistic) 0.000852

Table 13.3 Unit root test of the dollar/euro exchange rate.

10 In this case (C – 1) = –0.004, which gives C = 0.996, which is not exactly equal to 1. This would suggest

that the LEX series is stationary.



In each case the null hypothesis is that B3 =0 (i.e. unit root) and the alternative hypoth-

esis is that B3 < 0 (i.e. no unit root). However, the critical DF values are different for

each of these models. Which model holds in an application is an empirical question.

But guard against model specification errors. If model (13.7) is the “correct” model, fit-

ting either model (13.5) or (13.6) would constitute a model specification error: here

the omission of an important variable(s).

Which of the Equations (13.5), (13.6), and (13.7) should we use in practice? Here are

some guidelines:11

1 Use Eq. (13.5) if the time series fluctuates around a sample average of zero.

2 Use Eq. (13.6) if the times series fluctuates around a sample average that is

nonzero.

3 Use Eq. (13.7) if the time series fluctuates around a linear trend. Sometimes the

trend could be quadratic.

In the literature, model (13.5) is called a random walk model without drift (i.e. no

intercept), model (13.6) is called a random walk with drift (i.e. with an intercept), B1

being the drift (or shift) parameter, and model (13.7) is a random walk model with

drift and deterministic trend, so called because a deterministic trend value B2 is

added for each time period. We will have more to say about the deterministic trend

shortly.

Let us find out if regression (13.7) characterizes LEX. The results are given in Table

13.4.

The Eviews output given in this table is divided into two parts. The lower part gives

the usual OLS output of Eq. (13.7). It shows that all the estimated coefficients are indi-

vidually “highly” statistically significant on the basis of the t test and also the F value is

“highly” significant, suggesting that collectively all the regressors are significant deter-

minants of LEX.12

For the present purposes the important coefficient is that of the lagged LEX value.

The t value of this coefficient is significant at the 0.0025 level, whereas if you look at the

tau value of this coefficient given in the upper half of the above table, it is significant at

about the 0.125 level, which is much higher than the critical 1%, 5%, and 10% critical

tau values. In other words, on the basis of the tau test, the coefficient of the lagged LEX

is not different from zero, thus suggesting that the LEX time series is nonstationary.

This reinforces the conclusion based on the simple graphic picture as well as the

correlogram.

This exercise shows how misleading the conventional t and F tests can be if we are

dealing with a nonstationary time series.

Augmented Dickey–Fuller (ADF) test

In Models (13.5), (13.6), and (13.7) it was assumed that the error term ut is

uncorrelated. But if it is correlated, which is likely to be the case with model (13.7),

Dickey and Fuller have developed another test, called the augmented Dickey–Fuller
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11 See R. Carter Hill, William E. Griffiths and Guay C. Lim, Principles of Econometrics, 3rd edn, John

Wiley & Sons, New York, 2008, p. 336.

12 We also estimated the model with both linear and quadratic trend terms, but the quadratic trend term

was not statistically significant, its p value being 26%.



(ADF) test. This test is conducted by “augmenting” the three equations by adding the

lagged values of the dependent variable %LEXt as follows:

% %LEX B B t B LEX LEXt t i
i

m

t i t� � � � ��
�

�	1 2 3 1
1

� . (13.8)

where .t is a pure white noise error term and where m is the maximum length of the

lagged dependent variable, which is determined empirically.13 The objective is to

make the residuals from Eq. (13.7) purely random.

As in the DF test, the null hypothesis is that B3 in Eq. (13.8) is zero.

For our illustrative example we used m = 26. Even then, the conclusion that the

dollar/euro exchange rate time series is nonstationary did not change.
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Null Hypothesis: LEX has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic based on SIC, MAXLAG=0)

t-Statistic Prob.*

Augmented Dickey–Fuller test statistic –3.026489 0.1251

Test critical values: 1% level –3.961944

5% level –3.411717

10% level –3.127739

*MacKinnon (1996) one-sided p-values.
Augmented Dickey–Fuller Test Equation
Dependent Variable: D(LEX)
Method: Least Squares
Date: 01/26/10 Time: 12:04
Sample (adjusted): 2 2355
Included observations: 2354 after adjustments

Coefficient Std. Error t-Statistic Prob.

LEX(–1) –0.004088 0.001351 –3.026489 0.0025

C –0.000846 0.000292 –2.897773 0.0038

@TREND(1) 1.21E–06 3.22E–07 3.761595 0.0002

R-squared 0.005995 Mean dependent var 0.000113
Adjusted R-squared 0.005149 S.D. dependent var 0.005926
S.E. of regression 0.005911 Akaike info criterion –7.422695
Sum squared resid 0.082147 Schwarz criterion –7.415349
Log likelihood 8739.512 Durbin–Watson stat 1.999138
F-statistic 7.089626 Prob(F-statistic) 0.000852

Note: @Trend is Eviews’ command to generate the trend variable. D is Eviews’ symbol for
taking first differences.

Table 13.4 Unit root test of dollar/euro exchange rate with intercept and trend

terms.

13 But notice that if we introduce too many lags, they will consume a lot of degrees of freedom, which

might be a problem in small samples. For annual data we may include one or two lags, while for monthly data

we may include 12 lags. Of course, the purpose of introducing the lagged %LEX terms is to make the

resulting error term free of serial correlation.



In sum, it seems the evidence is overwhelming that the dollar/euro exchange rate is

nonstationary.

Is there a way we could make the dollar/euro exchange rate stationary? The answer

follows.

13.5 Trend stationary vs. difference stationary time series

As Figure 13.1 shows, the dollar/euro exchange rate time series has generally been

upward trending. A common practice to make such a trending time series stationary is

to remove the trend from it. This can be accomplished by estimating the following

regression:

LEX A A t vt t� � �1 2 (13.9)

where t (time) is a trend variable taking chronological values, 1, 2, ..., 2,355, and vt is

the error term with the usual properties.14 After running this regression, we obtain

�v LEX a a tt� � �1 2 (13.10)

The estimated error term in Eq. (13.10), �vt , now represents the detrended LEX time

series, that is LEX with the trend removed.

The procedure just described is valid if the original LEX series has a deterministic

trend. The residuals obtained from regression (13.10) are shown in Figure 13.3.

This figure very much resembles Figure 13.1. If you subject the series in Figure 13.3

to unit root analysis, you will find that the detrended LEX series is still

nonstationary.15 Therefore the de-trending procedure just outlined will not make a
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Figure 13.3 Residuals from the regression of LEX on time.

14 A quadratic trend could also be added.

15 Even if you add the quadratic trend term, t2, to Eq. (13.9), the residuals from this regression still show

that they are nonstationary.



nonstationary time series stationary, because such a procedure is valid only if the

series contains a deterministic trend. What then?

If a time series becomes stationary if we detrend it in the manner suggested, it is

called a trend stationary (stochastic) process (TSP). It may be pointed out here that a

process with a deterministic trend is nonstationary but not a unit root process.

Instead of detrending a time series in the manner suggested above, suppose we take

the first differences of LEX (subtract the preceding value of LEX from its current

value). This gives us Figure 13.4.

Unlike Figure 13.1, we do not see a discernible trend in the first differences of LEX.

If we obtain the correlogram of the first differences of LEX, we obtain Table 13.5.

As you can see, up to 30 lags, none of the autocorrelation coefficients are statisti-

cally significant at the 5% level; neither is the Q statistic.

An application of the unit root tests also showed that there is no unit root in the first

differences of LEX. That is, it is the first difference of the LEX series that is stationary.

If a time series becomes stationary after we take its first differences, we call such a

time series a difference stationary (stochastic) process (DSP).16

It is important to note that if a time series is DSP but we regard it as TSP, this is

called under-differencing. On the other hand, if a time series is TSP and we treat it as

DSP, this is called over-differencing. In Figure 13.3 we in fact under-differenced the

LEX series.

The main conclusion we reach is that the LEX time series is difference stationary.
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Figure 13.4 First differences of LEX.

16 Occasionally we may have to difference a time series more than once to make it stationary.



Integrated time series

In the time series literature you will often come across the term “integrated time

series”. If such a time series becomes stationary after differencing it once, it is said to

be integrated of order one, denoted as I(1). If it has to be differenced twice (i.e. differ-

ence of difference) to make it stationary, it is said to be integrated of order two, de-

noted as I(2). If it has to be differenced d times to make it stationary, it is said to be

integrated of order d, denoted as I(d). A stationary time series is I(0), that is, integrated

of order zero. Therefore the terms “stationary time series” and “time series integrated

of order zero” mean the same thing. By the same token, if a time series is integrated, it

is nonstationary.
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AC PAC Q-Stat Prob

1 0.002 0.002 0.0113 0.915

2 –0.001 –0.001 0.0125 0.994

3 –0.017 –0.017 0.6673 0.881

4 0.051 0.052 6.9213 0.140

5 –0.036 –0.037 10.017 0.075

6 0.016 0.016 10.643 0.100

7 0.020 0.022 11.582 0.115

8 –0.024 –0.028 12.970 0.113

9 0.003 0.008 12.997 0.163

10 –0.013 –0.015 13.379 0.203

11 –0.003 –0.004 13.396 0.268

12 0.012 0.016 13.735 0.318

13 0.034 0.030 16.482 0.224

14 –0.003 –0.001 16.501 0.284

15 –0.032 –0.031 18.857 0.220

16 0.011 0.010 19.140 0.261

17 0.002 0.000 19.148 0.320

18 0.021 0.022 20.222 0.320

19 0.019 0.021 21.085 0.332

20 0.022 0.017 22.193 0.330

21 –0.035 –0.032 25.141 0.241

22 0.041 0.041 29.088 0.142

23 0.033 0.032 31.619 0.108

24 0.038 0.037 35.079 0.067

25 –0.007 –0.004 35.189 0.085

26 0.008 0.001 35.341 0.104

27 –0.015 –0.013 35.903 0.117

28 –0.028 –0.027 37.786 0.103

29 –0.014 –0.015 38.230 0.117

30 0.012 0.010 38.570 0.136

Table 13.5 Correlogram of first differences of LEX.



It may be added that an I(0) series fluctuates around its mean with constant vari-

ance, while an I(1) series meanders wildly. Another way of putting this is that an I(0)

series is mean reverting, whereas an I(1) series does not show such a tendency. It can

drift away from the mean permanently. That is why an I(1) series is said to have a sto-

chastic trend. As a result, the autocorrelations in a correlogram of an I(0) series de-

cline to zero very rapidly as the lag increases, whereas for an I(1) series they decline to

zero very slowly, as the correlogram of the LEX series in Table 13.2 shows clearly.

Most nonstationary economic time series generally do not need to be differenced

more than once or twice.

To sum up, a nonstationary time series is known variously as an integrated time

series or a series with stochastic trend.

Before we conclude this chapter, we will discuss briefly a special type of

nonstationary time series that figures prominently in the finance literature, namely the

random walk time series.

13.6 The random walk model (RWM)

It is often said that asset prices, such as stock prices and exchange rates, follow a

random walk, that is, they are nonstationary.17 We distinguish two types of random

walk: (1) random walk without drift (i.e. no constant term or intercept) and (2) random

walk with drift (i.e. a constant term is present).

Random walk without drift

Consider the following model:

Y Y ut t t� ��1 (13.11)

where Yt is, say, today’s stock price and Yt-1 is yesterday’s price, and whereut is a white

noise error term with zero mean and variance 
2 .

We can think of Eq. (13.11) as a regression of Y at time t on its value lagged one

period. Believers in the efficient market hypothesis maintain that stock prices are

random and therefore there is no scope for profitable speculation in the stock

market.18

By successive substitution in Eq. (13.11), it can be shown that

Y Y ut t� �	0 (13.12)

where Y0 is the initial stock price.

Therefore,

E Y E Y E u Yt t( ) ( ) ( )� � �0 0� (13.13)

since the expectation of each ut is zero.

By successive substitution, it can also be shown that (see Exercise 13.1):
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17 The term random walk is often compared with a drunkard’s walk. On leaving a bar, the drunkard

moves a random distance ut at time t and, continuing to walk indefinitely, will eventually meander farther

and farther away from the bar. The same can be said about stock prices. Today’s stock price is equal to

yesterday’s stock price plus a random shock.

18 Technical analysts, or chartists as they are called, do not believe in such a hypothesis and believe that

they can predict stock price patterns from historically observed stock prices.



var( )Y tt � 
2 (13.14)

From the preceding discussion we see that the mean of Y is equal to its initial, or

starting, value, which is constant, but as t, the time horizon, increases indefinitely, the

variance of Y also increases indefinitely, thus violating one of the conditions of

stationarity that the variance is a finite constant.

In short, the random walk model without drift is a particular, and important, case of

a nonstationary stochastic process.

Interestingly, if we write Eq. (13.11) as

Y Y Y ut t t t� � ��1 % (13.15)

where % is the first difference operator.

Therefore, even though Yt is nonstationary, its first difference is stationary. To put it

differently, the RWM without drift is a difference stationary process.

Random walk with drift

Now let us revise Eq. (13.11) and write it as

Y Y ut t t� � ��/ 1 (13.16)

where / (delta) is known as the drift parameter, which is basically an intercept in the

RWM.

For the RWM with drift, it can be shown that

E Y Y tt( ) � �0 / (13.17)

var( )Y tt � 
2 (13.18)

As you can see, for the RWM with drift both the mean and variance increase over time,

again violating the condition of stationary time series.

Let us rewrite Eq. (13.16) as

Y Y Y ut t t t� � � ��1 % / (13.19)

which is the first difference of a RWM with drift. It is easy to verify that

E Yt( )% � / (13.20)

var( )%Yt � 
2 (13.21)

cov( , ) ( )% %Y Y E u ut t s t t s� �� � 0 (13.22)

because ut is the white noise error term.

What all this means is that although the RWM with drift is a nonstationary time

series, its first difference is a stationary (stochastic) process. To put it differently,

RWM with drift is an I(1) process, whereas its first difference is an I(0) process. Here

the constant /acts like a linear trend because in each period the level of Yt shifts, on av-

erage, by the amount /.
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An example: closing daily prices of IBM stock, 4 January 2000 to 20
August 2002

To see whether IBM prices over the sample period followed a random walk, we first

plotted the log of the closing daily prices of the stock, giving Figure 13.5 (see Table

13.6 on the companion website).

Visually, it seems the logs of IBM prices are nonstationary.

Can we verify this statistically? You might be tempted to run the following regres-

sion (let Y represent the log of daily closing IBM prices):

Y B B Y ut t t� � ��1 2 1 (13.23)

and test the hypothesis that B2 = 1 with the usual t test. However, in cases of

nonstationary time series, the t test is severely biased toward zero. To circumvent this,

we manipulate Eq. (13.23) as follows: Subtract Yt–1 from both sides of this equation to

obtain:

Y Y B B Y Y u

Y B Y u

t t t t t

t t t

� � � � �

� � �

� � �

�

1 1 2 1 1

1 1

that is

% �

(13.24)

where � � �B2 1.

So instead of estimating Eq. (13.23), we estimate Eq. (13.24) and test the hypothesis

that � � 0 against the alternative hypothesis that � � 0.19 If � � 0, then B2 = 1 and Y is a

random walk (with drift), that is, it is nonstationary. Technically, the Y time series has a

unit root. On the other hand, if � � 0, we can conclude that Yt is stationary.20
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Figure 13.5 Log of daily closing of IBM stock.

19 We are essentially performing a unit root analysis.

20 If � � �( )B2 1 for stationarity, B2 must be less than 1. For this to happen � must be negative.



After you estimate regression (13.24), you cannot test the null hypothesis that � � 0

with the usual t test because the t value of the estimated coefficient of Yt–1 does not

follow the t distribution even in large samples.

As noted earlier, in situations like this, we use the Dickey–Fuller tau statistic, whose

critical values have been formulated by them and have since been expanded by

MacKinnon, which are now incorporated in several econometric packages.

Using Eviews 6, we obtained the results shown in Table 13.7. The second part of this

table gives the usual OLS output. The t value of the lagged closing price of the IBM co-

efficient is –1.0026 with p value of about 0.30, suggesting that this coefficient is not dif-

ferent from zero, and thus supporting the hypothesis that the IBM closing stock prices

are a random walk or that the IBM price series is nonstationary.

If you look at the first part of this output, you will find that the p value of the

Dickey–Fuller tau value of the lagged closing price of IBM coefficient is about 0.75,

again supporting the random walk hypothesis. But note how the level of significance of

the usual t statistic and the tau statistic can differ substantially.

Are the first differences of IBM closing prices stationary?

Since we know that the first differences of the log IBM stock prices are stationary be-

cause the first differences of an RW model are stationary, it would not surprise us to
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Null Hypothesis: LCLOSE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on AIC, MAXLAG=0)

t-Statistic Prob.*

Augmented Dickey–Fuller test statistic –1.026066 0.7455

Test critical values: 1% level –3.439654

5% level –2.865536

10% level –2.568955

*MacKinnon (1996) one-sided p-values.
Augmented Dickey–Fuller Test Equation
Dependent Variable: D(LCLOSE)
Method: Least Squares
Date: 01/25/10 Time: 12:03
Sample (adjusted): 1/04/2000 8/20/2002
Included observations: 686 after adjustments

Coefficient Std. Error t-Statistic Prob.

LCLOSE(–1) –0.006209 0.006051 –1.026066 0.3052

C 0.027766 0.027984 0.992236 0.3214

R-squared 0.001537 Mean dependent var –0.000928
Adjusted R-squared 0.000077 S.D. dependent var 0.026385
S.E. of regression 0.026384 Akaike info criterion –4.429201
Sum squared resid 0.476146 Schwarz criterion –4.415991
Log likelihood 1521.216 Hannan–Quinn criter. –4.424090
F-statistic 1.052811 Durbin–Watson stat 2.099601
Prob(F-statistic) 0.305223

Note: In this table, D stands for first difference and Lclose is the log of daily IBM price at
the close of the stock market in the USA.

Table 13.7 Unit root test of IBM daily closing prices.



find that that is indeed the case. If you estimate the correlogram of the first differences,

you will find that the correlations hover around zero, which is typically the case of a

white noise time series.

If we do a formal unit root analysis, we obtain the results in Table 13.8. These results

suggest that we can reject the unit root hypothesis in the first differences of the logged

IBM stock price series. The estimated tau (= t) is more highly significantly negative

than even the 1% critical tau value. In this case the tau and t statistics are the same.

Earlier we noted that we cannot use a nonstationary time series for forecasting pur-

poses. Can we use the first-differenced LEX or IBM stock prices for forecasting? How

do we then relate the forecast first-difference series to the original (undifferenced)

time series? We will take up this task in a later chapter (see Chapter 16 on ARIMA

models).

13.7 Summary and conclusions

Although we have studied only two financial economic time series, the ideas and tech-

niques discussed in this chapter are applicable to other economic and financial time

series, for most economic time series in level form are nonstationary. Such series often

exhibit an upward or downward trends over a sustained period of time. But such a

trend is often stochastic and not deterministic. This has important implications for re-

gression analysis, for regressing a nonstationary time series on one or more

nonstationary time series may often lead to the phenomenon of spurious or
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Null Hypothesis: D(LCLOSE) has a unit root
Exogenous: None
Lag Length: 0 (Automatic based on SIC, MAXLAG=0)

t-Statistic Prob.*

Augmented Dickey–Fuller test statistic –27.65371 0.0000

Test critical values: 1% level –2.568342

5% level –1.941286

10% level –1.616388

*MacKinnon (1996) one-sided p-values.
Augmented Dickey–Fuller Test Equation
Dependent Variable: D(LCLOSE,2)
Method: Least Squares
Date: 01/26/10 Time: 11:15
Sample (adjusted): 1/05/2000 8/20/2002
Included observations: 685 after adjustments

Coefficient Std. Error t-Statistic Prob.

D(LCLOSE(–1)) –1.057102 0.038226 –27.65371 0.0000

R-squared 0.527857 Mean dependent var 0.000116
Adjusted R-squared 0.527857 S.D. dependent var 0.038349
S.E. of regression 0.026351 Akaike info criterion –4.433187
Sum squared resid 0.474941 Schwarz criterion –4.426575
Log likelihood 1519.367 Hannan–Quinn criter. –4.430629
Durbin–Watson stat 1.989376

Table 13.8 Unit root test of first differences of IBM daily closing prices.



meaningless regression. As we will show in the next chapter, only in the case of

cointegrated time series may we avoid spurious correlation, even if the underlying

series are nonstationary.

We looked at three diagnostic tools to find out if a time series is stationary. The sim-

plest of these is a time series plot of the series. Such a plot of a time series is a very valu-

able tool to get a “feel” about the nature of the time series. More formally, we can

examine the correlogram of the time series over several lags. The correlogram will

suggest if the correlation of the time series over several lags decays quickly or slowly. If

it does decay very slowly, perhaps the time series is nonstationary.

A test that has become popular is the unit root test. If on the basis of the

Dickey–Fuller test or the augmented Dickey–Fuller test, we find one or more unit

roots in a time series, it may provide yet further evidence of nonstationarity.

Since traditional regression modeling is based on the assumption that the time

series used in analysis are stationary, it is critical that we subject a time series to

stationarity tests discussed above.

If a time series has deterministic trend, it can be made stationary by regressing it on

the time or trend variable. The residuals from his regression will then represent a time

series that is trend-free.

However, if a time series has a stochastic trend, it can be made stationary by differ-

encing it one or more times.

Exercises

13.1 Verify Eqs. (13.13) and (13.14).

13.2 Verify Eqs. (13.17) and (13.18).

13.3 For the IBM stock price series estimate model (13.7) and comment of the results.

13.4 Suppose in Eq. (13.7) B3 = 0. What is the interpretation of the resulting model?

13.5 Would you expect quarterly US real GDP series to be stationary? Why or why

not? Obtain data on the quarterly US GDP from the website of the Federal Reserve

Bank of St Louis to support your claim.

13.6 Repeat 13.5 for the Consumer Price Index (CPI) for the USA.

13.7 If a time series is stationary, does it mean that it is a white noise series? In the

chapter on autocorrelation, we considered the Markov first-order autoregressive

scheme, such as:

u ut t t� ��� .1

where ut is the error term in the regression model, � is the coefficient of

autocorrelation, and .t is a white noise series. Is ut a white noise series? Is it stationary,

if so, under what conditions? Explain.
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14
Cointegration and error correction

models

In the previous chapter we stated that if we regress a nonstationary time series on one

or more nonstationary series, we might obtain a high R2 value and one or more regres-

sion coefficients that are statistically significant on the basis of the usual and t and F

tests. But these results are likely to be spurious or misleading because the standard

linear regression procedures assume that the time series involved in the analysis are

stationary in the sense defined in the previous chapter. If this is not the case, the result-

ing regression may be a spurious regression.

In this chapter we show how a spurious regression may arise and the reasons for it.

We also show what can be done if we encounter a spurious regression.

In this chapter we also explain the phenomenon of cointegration, a situation in

which the regression of one nonstationary time series on one or more nonstationary

time series may not result in a spurious regression. If this happens, we say the time

series under study are cointegrated, that is, there is a long-term or equilibrium rela-

tionship between them. We show this with concrete examples and explain the condi-

tions under which cointegration can occur.

14.1 The phenomenon of spurious regression

If a trending variable is regressed on one or more trending variables we often find sig-

nificant t and F statistics and a high R2, but there is really no true relationship between

them because each variable is growing over time. This is known as the problem of spu-

rious or false regression. Very often the clue that the relationship is spurious is found

in the low Durbin–Watson d statistic.

Here are some examples of spurious regressions:1

1 Egyptian infant mortality rate (Y), 1971–1990, annual data, on Gross aggregate

income of American farmers (I) and Total Honduran money supply (M)

�Y = 179.9 – .2952 I – .0439 M, R2 = .918, D/W = .4752, F = 95.17

(16.63) (–2.32) (–4.26) Corr = .8858, –.9113, –.9445

2 US Export Index (Y), 1960–1990, annual data, on Australian males’ life expectancy

(X)

234

1 See http://www.eco.uc3m.es/jgonzalo/teaching/timeseriesMA/examplesspuriousregression.pdf



�Y = –2943. + 45.7974 X, R2 = .916, D/W = .3599, F = 315.2

(–16.70) (17.76) Corr = .9570

3 US Defense Expenditure (Y), 1971–1990, annual data, on Population of South

Africa (X)

�Y = –368.99 + .0179 X, R2 = .940, D/W = .4069, F = 280.69

(–11.34) (16.75) Corr = .9694

4 Total Crime Rates in the US (Y), 1971–1991, annual data, on Life expectancy in

South Africa (X)

�Y = –24569 + 628.9 X, R2 = .811, D/W = .5061, F = 81.72

(–6.03) (9.04) Corr = .9008

5 Population of South Africa (Y), 1971–1990, annual data, on Total R&D expendi-

ture in the US (X)

�Y = 21698.7 + 111.58 X, R2 = .974, D/W = .3037, F = 696.96

(59.44) (26.40) Corr = .9873

Note: Corr is coefficient of correlation.

In each of these examples, there is no logical reason for the observed relationship

among the variables. It so happens that all the variables in these examples seem to be

trending over time.

14.2 Simulation of spurious regression

Consider the following two random walk series without drift:

Y Y ut t t� ��1 (14.1)

X X vt t t� ��1 (14.2)

where ut and vt each are NIID(0, 1), that is, each error term is normally and inde-

pendently distributed with zero mean and unit variance (i.e. standard normal distri-

bution). We obtained 500 observations for each series from the standard normal

distribution.

We know from the discussion in the previous chapter that both these series are

nonstationary, that is, they are I(1) or exhibit stochastic trends.

Since Yt and Xt are uncorrelated I(1) processes, there should not be any relationship

between the two variables. But when we regressed Yt on Xt, we obtained the following

results:

� . .

( . )( . ) .

Y X

t R

t t� � �

� � �

132556 03376

213685 7 6122 010442 ; .d � 0 0123
(14.3)

This regression shows that both the intercept and slope coefficients are highly sig-

nificant, for their t values are so high. Thus this regression shows a significant
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relationship between the two variables, although there should not be any. This in a

nutshell is the phenomenon of spurious regression, first pointed out by the statistician

Yule.2

That there is something “fishy” about the results given in Eq. (14.3) is suggested by

the extremely low Durbin–Watson statistic. According to Granger and Newbold, an

R2 > d is a good rule of thumb to suspect that the estimated regression is spurious.3 All

the examples discussed above seem to be in accord with this rule. Note that the

Durbin–Watson d statistic is often used to measure first-order serial correlation in the

error term, but it can also be used as an indicator that a time series is nonstationary.

14.3 Is the regression of consumption expenditure on
disposable income spurious?

Table 14.1 (which may be found on the companion website) gives quarterly data on

personal consumption expenditure (PCE) and personal disposable (i.e. after-tax)

income (PDI) for the USA for the period 1970–2008, for a total of 156 observations. All

the data are in billions of 2000 dollars.

Let us first plot the data, as shown in Figure 14.1. As we have done frequently, we

have plotted the data on a logarithmic scale so that changes in the variables represent

relative changes, or percentage changes after multiplication by 100.

This figure shows that both LPDI and LPCE are trending series, which suggests that

these series are not stationary. They seem to be I(1), that is, they have stochastic

trends. This can be confirmed by unit root analysis, as shown in Tables 14.2 and 14.3.
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Figure 14.1 Logs of PDI and PCE, USA 1970–2008.

2 G. U. Yule, Why do we sometimes get nonsense correlation between time series? A study in sampling

and the nature of series. Journal of the Royal Statistical Society, vol. 89, 1926, pp. 1–64.

3 C. W. J. Granger and P. Newbold, Spurious regression in econometrics. Journal of Econometrics, vol. 2,

1974, pp. 111–20.



We have used the augmented Dickey–Fuller (ADF) test by including one lagged

term of first difference of lagged LPD. The coefficient of primary interest is the coeffi-

cient of lagged LPD, which is –0.11133, which on the basis of the usual t test is signifi-

cant at the 0.006 level, but on the basis of the tau statistic it is significant at the 0.20

level, indicating that the LPD time series is nonstationary.

Here too the LPCE series is nonstationary on the basis of the ADF test, although the

usual t test declares otherwise.

It seems that both LPCE and LPDI series have a unit root, or stochastic trend.

Therefore, if we regress LPCE on LPDI, we might get a spurious regression. Before we

consider this possibility, let us present the results of this regression (Table 14.4).

Before we interpret the results, notice that R2 > d = 0.3672. This raises the possibil-

ity that this regression might be spurious, which might be due to regressing one sto-

chastic trend series on another stochastic trend series. Of course, if we interpret the

Durbin–Watson on its own, it would suggest that the error term in this regression suf-

fers from first-order autocorrelation.

The results at their face value suggest that the elasticity of personal consumption

expenditure of 1.08 with respect to PDI is greater than one – a one percent increase in
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Null Hypothesis: LPDI has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic based on AIC, MAXLAG=1)

t-Statistic Prob.*

Augmented Dickey–Fuller test statistic –2.774807 0.2089

Test critical values: 1% level –4.018748

5% level –3.439267

10% level –3.143999

*MacKinnon (1996) one-sided p-values.
Augmented Dickey–Fuller Test Equation
Dependent Variable: D(LPDI)
Method: Least Squares
Date: 01/27/10 Time: 09:14
Sample (adjusted): 1970Q3 2008Q4
Included observations: 154 after adjustments

Coefficient Std. Error t-Statistic Prob.

LPDI(–1) –0.11133 0.040123 –2.774807 0.0062

D(LPDI(–1)) –0.12236 0.080488 –1.520277 0.1305

C 0.894817 0.318753 2.807246 0.0057

@TREND(1970Q1) 0.001 0.0003 2.703094 0.0077

R-squared 0.08339 Mean dependent var 0.0075
Adjusted R-squared 0.06506 S.D. dependent var 0.0098
S.E. of regression 0.0095 Akaike info criterion –6.44516
Sum squared resid 0.0136 Schwarz criterion –6.36628
Log likelihood 500.2774 Durbin–Watson stat 1.97578
F-statistic 4.548978 Prob(F-statistic) 0.0044

Note: D stands for first-difference and @trend is the trend variable

Table 14.2 Unit root analysis of the LPDI series.



PDI leads to more than a one percent increase in personal consumption expenditure.

This elasticity seems high.

Because of the possibility of spurious regression, we should be wary of these results.
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Null Hypothesis: LPCE has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic based on AIC, MAXLAG=1)

t-Statistic Prob.*

Augmented Dickey–Fuller test statistic –2.038416 0.5754

Test critical values: 1% level –4.018748

5% level –3.439267

10% level –3.143999

*MacKinnon (1996) one-sided p-values.
Augmented Dickey–Fuller Test Equation
Dependent Variable: D(LPCE)
Method: Least Squares
Date: 01/27/10 Time: 09:19
Sample (adjusted): 1970Q3 2008Q4
Included observations: 154 after adjustments

Coefficient Std. Error t-Statistic Prob.

LPCE(–1) –0.0503 0.024686 –2.038416 0.0433

D(LPCE(–1)) 0.313333 0.079964 3.9184 0

C 0.398477 0.192288 2.072292 0.0399

@TREND(1970Q1) 0 0.0002 1.975799 0.05

R-squared 0.111128 Mean dependent var 0.0078
Adjusted R-squared 0.09335 S.D. dependent var 0.0068
S.E. of regression 0.0065 Akaike info criterion –7.22165
Sum squared resid 0.0063 Schwarz criterion –7.14277
Log likelihood 560.0671 Durbin–Watson stat 2.104952
F-statistic 6.251045 Prob(F-statistic) 0.001

Table 14.3 Unit root analysis of the LPCE series.

Dependent Variable: LPCE
Method: Least Squares
Sample: 1970Q1 2008Q4
Included observations: 156

Coefficient Std. Error t-Statistic 1Prob.

C –0.84251 0.033717 –24.98747 0

LPDI 1.086822 0.00395 275.2413 0

R-squared 0.997971 Mean dependent var 8.430699
Adjusted R-squared 0.997958 S.D. dependent var 0.366642
S.E. of regression 0.01657 Akaike info criterion –5.35003
Sum squared resid 0.04227 Schwarz criterion –5.31093
Log likelihood 419.3021 Durbin–Watson stat 0.367187
F-statistic 75757.76 Prob(F-statistic) 0

Table 14.4 Regression of LPCE on LPDI.



Since both the time series are trending, let us see what happens if we add a trend

variable to the model. Before we do that it may be worth noting that the trend variable

is a catch-all for all other variables that might affect both the regressand and

regressor(s). One such variable is population, because as population increases the ag-

gregate consumption expenditure and aggregate disposable income also increase. If

we had quarterly data on population, we could have added that variable as an addi-

tional regressor instead of the trend variable. Better yet, we could have expressed con-

sumption expenditure and personal disposable income on a per capita basis. So keep

in mind that the trend variable may be a surrogate for other variables. With this caveat,

let us see what happens if we add the trend variable to our model.

Compared to the results in Table 14.4, there are changes. The elasticity of LPCE

with respect LPID is now much less than unity, although it is still statistically signifi-

cant on the basis of the usual t test and the trend variable is also statistically significant.

Therefore, allowing for linear trend, the relationship between the two variables is

strongly positive. But notice again the low Durbin–Watson value, which suggests that

the results are plagued by autocorrelation. Or maybe this regression too is spurious.

14.4 When a spurious regression may not be spurious

Underlying the regression in Table 14.5 is the population regression model:

lPCE B B lPDI B t ut t t� � � �1 2 3 (14.4)

where t is time or trend.

Rewrite this model as:

u lPCE B B lPDI B tt t� � � �1 2 3 (14.5)

After estimating (14.4), suppose we subject the estimated ut (= et) to unit root analy-

sis and find that it is stationary, that is, it is I(0). This is an intriguing situation, for al-

though the log of PCE and log of PDI are individually I(1), that is, that they have

stochastic trends, their (linear) combination as shown in Eq. (14.5) is I(0). This linear

combination, so to speak, cancels out the stochastic trends in the two series. In that
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Dependent Variable: LPCE
Method: Least Squares
Sample: 1970Q1 2008Q4
Included observations: 156

Coefficient Std. Error t-Statistic Prob.

C 1.675338 0.487797 3.4345 0.001

LPDI 0.770241 0.061316 12.56176 0

@TREND 0.0024 0.0005 5.172271 0

R-squared 0.998273 Mean dependent var 8.430699
Adjusted R-squared 0.998251 S.D. dependent var 0.366642
S.E. of regression 0.01534 Akaike info criterion –5.49835
Sum squared resid 0.03598 Schwarz criterion –5.4397
Log likelihood 431.8712 Durbin–Watson stat 0.261692
F-statistic 44226.49 Prob(F-statistic) 0

Table 14.5 Regression of LPCE on LPDI and trend.



case the regression of lPCE on LPDI is not spurious. If this happens, we say that the

variables lPCE and lPDI are cointegrated. This can be seen clearly in Figure 14.1, for

even though the two series are stochastically trending, they do not drift apart substan-

tially. It is as if two drunkards are meandering aimlessly, but they keep pace with each

other.

Economically speaking, two variables will be cointegrated if they have a long-run, or

equilibrium, relationship between them. In the present context economic theory tells

us that there is a strong relationship between consumption expenditure and personal

disposable income. Remember that PCE is about 70% of PDI.

The point of all this discussion is that not all time series regressions are spurious. Of

course, we need to test this formally. As Granger notes, “A test for cointegration can be

thought of as a pre-test to avoid ‘spurious regression’ situations”.4

In the language of cointegration theory, regression like (14.4) is known as a

cointegrating regression and the slope parameters B2 and B3 are known as

cointegrating parameters.

14.5 Tests of cointegration

Although there are several tests of cointegration, we consider here the test we have al-

ready discussed in the previous chapter, the DF and ADF unit root tests on the residu-

als estimated from the cointegrating regression, as modified by the Engle–Granger

(EG) and Augmented Engle–Granger (AEG) test.5

The EG and AEG tests

To use the DF or ADF test, we estimate a regression like (14.4), obtain residuals from

this regression, and use these tests. However, since we only observe et and not ut, the

DF and ADF critical significance values need to be adjusted, as suggested by Engle and

Granger.6 In the context of testing for cointegration, the DF and ADF tests are known

as Engle–Granger (EG) and augmented Engle–Granger (AEG) tests, which are now

incorporated in several software packages.

Let us apply these tests to the PCE-PDI regression (14.4). The results of this regres-

sion are already shown in Table 14.5. Let us first run the EG test with no intercept and

no trend term, which gives the results of Table 14.6.

This output clearly shows that the residuals from regression (14.4) are stationary,

for the computed tau value of the lagged residual term far exceeds any of the critical

values in the table. The results did not change materially if we add several lagged D(S3)

terms. Notice also how the Durbin–Watson value has changed.

Unit root tests and cointegration tests

Notice the difference between the unit root and cointegration tests. Tests for unit

roots are performed on single time series, whereas cointegration deals with the
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4 C. W. Granger, Developments in the study of co-integrated economic variables, Oxford Bulletin of

Economics and Statistics, vol. 48, 1986, p. 226.

5 A test with better statistical properties is Johansen’s cointegration test. But this test is mathematically

somewhat complex. The interested reader may consult some of the textbooks mentioned in this chapter.

6 R. F. Engle and C. W. Granger, Co-integration and error correction: representation, estimation, and

testing, Econometrica, vol. 55, 1987, pp. 251–76.



relationship among a group of variables, each having a unit root. In practice, it is better

to test each series for unit roots, for it is quite possible that some of the series in a group

may have more than one unit root, in which case they will have to be differenced more

than once to make them stationary.

If two time series Y and X are integrated of different orders then the error term in

the regression of Y and X is not stationary and this regression equation is said to be un-

balanced. On the other hand, if the two variables are integrated of the same order, then

the regression equation is said to be balanced.

14.6 Cointegration and error correction mechanism (ECM)

After allowing for deterministic trend, we have shown that log PCE and log PDI series

are cointegrated, that is, they have a long-term, or equilibrium, relationship. But how

is this equilibrium achieved, for in the short-run there may be disequilibrium?

We can treat the error term in Eq. (14.5) as the “equilibrating” error term that cor-

rects deviations of LPCE from its equilibrium value given by the cointegrating
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Null Hypothesis: S3 has a unit root
Exogenous: None
Lag Length: 0 (Automatic based on SIC, MAXLAG=0)

t-Statistic Prob.*

Augmented Dickey–Fuller test statistic –3.392603 0.001

Test critical values: 1% level –2.579967

5% level –1.942896

10% level –1.615342

*MacKinnon (1996) one-sided p-values.
Augmented Dickey–Fuller Test Equation
Dependent Variable: D(S3)
Method: Least Squares
Date: 01/29/10 Time: 10:44
Sample (adjusted): 1970Q2 2008Q4
Included observations: 155 after adjustments

Coefficient Std. Error t-Statistic Prob.

S3(–1) –0.13599 0.040085 –3.392603 0.001

R-squared 0.06781 Mean dependent var 0
Adjusted R-squared 0.06781 S.D. dependent var 0.0078
S.E. of regression 0.0075 Akaike info criterion –6.93014
Sum squared resid 0.0088 Schwarz criterion –6.91051
Log likelihood 538.0859 Durbin–Watson stat 2.388956

Note: S3 represents the residual term from regression (14.4). Also note that in this
regression there is no intercept because the mean value of the residuals in an OLS
regression is zero.

Table 14.6 Unit root test on residuals from regression (14.4).



regression (14.4). Dennis Sargan called this the error correction mechanism (ECM), a

term that was later popularized by Engle and Granger.7

An important theorem, known as Granger Representation Theorem, states that if

two variables Y and X are cointegrated, the relationship between the two can be ex-

pressed as an ECM. To see the importance of this, we continue with the PCE-PDI ex-

ample. Now consider the following model:

% %lPCE A A lPDI A u vt t t t� � � ��1 2 3 1 (14.6)

where %, as usual, is the first-difference operator, ut�1 is the lagged value of the error

correction term from Eq. (14.5), and vt is a white noise error term.

We know that Eq. (14.4) gives the long-run relationship between lPCE and lPDI. On

the other hand, Eq. (14.6) gives the short-run relationship between the two. Just as B2

in Eq. (14.4) gives the long-run impact of lPDI on lPCE, A2 in Eq. (14.6) gives the im-

mediate, or short-run, impact of %LPDI on %LPCE.

Model (14.6), called the error correction model (ECM), postulates that changes in

LPCE depend on changes in lPDI and the lagged equilibrium error term, ut–1.8 If this

error term is zero, there will not be any disequilibrium between the two variables and

in that case the long-run relationship will be given by the cointegrating relationship

(14.4) (no error term here). But if the equilibrium error term is nonzero, the relation-

ship between LPCE and LPDI will be out of equilibrium.

To see this, let %lPDI � 0 (no change in lPDI) and suppose ut–1 is positive. This

means LPCEt�1 is too high to be in equilibrium – that is, LPCEt�1 is above its equilib-

rium value (B B LPDIt1 2 1� � ). Since A3 in Eq. (14.6) is expected to be negative, the term

A ut3 1� is negative and, therefore %lPCEt will be negative to restore the equilibrium.

That is, if LPCEt is above its equilibrium value, it will start falling in the next period to

correct the equilibrium error; hence the name ECM.

By the same token, if lPCEt is below its equilibrium value (i.e. if ut�1 is negative),

A ut3 1� will be positive, which will cause %LPCEt to be positive, leading lPCE to rise in

period t.

Thus the absolute value of A3 will decide how quickly the equilibrium is reached.

Note that in practice we estimate ut–1 by its sample counterpart et–1.

It is interesting to note that Eq. (14.6) incorporates both the short-run and long-run

dynamics. Also note that in Eq. (14.6) all the variables are I(0), or stationary. So Eq.

(14.6) can be estimated by OLS.

To see all this theory in practice, we return to our illustrative example. The empiri-

cal counterpart of Eq. (14.6) is shown in Table 14.7.

Interpretation of the results

First, note that all coefficients in this table are individually statistically significant at

the 6% or lower level. The coefficient of about 0.31 shows that a 1% increase in

ln( / )LPDI LPDIt t�1 will lead on average to a 0.31% increase in ln( / )LPCE LPCEt t�1 .

242 Topics in time series econometrics

7 See J. D. Sargan, Wages and prices in the United Kingdom: a study in econometric methodology, in K.

F. Wallis and D. F. Hendry (eds.), Quantitative Economics and Economic Analysis, Basil Blackwell, Oxford,

UK, 1984.

8 We use the lagged error term because it is the error made in the previous period that will be used to

correct the imbalance in the current time period.



This is the short-run consumption–income elasticity. The long-run value is given by

the cointegrating regression Eq. (14.5), which is about 0.77.

The coefficient of the error-correction term of about –0.06 suggests that only about 6%

of the discrepancy between long-term and short-term PCE is corrected within a quarter,

suggesting a slow rate of adjustment to equilibrium. One reason the rate of adjustment

seems low is that our model is rather simple. If we had the necessary data on interest rate,

wealth of consumer, and so on, probably we might have seen a different result.

To further familiarize the reader with concept of cointegration and ECM we con-

sider another example.

14.7 Are 3-month and 6-month Treasury Bill rates
cointegrated?

Figure 14.2 plots the constant maturity 3-month and 6-month US Treasury Bill

(T-bill) rates from January 1981 to January 2010, for a total 349 observations. See

Table 14.8 on the companion website.

Since the two treasury bills seem to be so closely aligned, we would expect that the

two rates are cointegrated, that is, there is a stable equilibrium relationship between

the two, even though they both exhibit trends. This is what we would expect from fi-

nancial economics theory, for if the two rates are not cointegrated, arbitrageurs will

exploit any discrepancy between the short and the long rates.

But let us see if that is the case. We first test each series for stationarity. Including

intercept, trend and five lagged terms, it was found that the TB3 series was stationary

at about the 5% level. Under the same structure, the TB6 series was also found to be

stationary at about the 5% level. Therefore it seems that both time series are stationary.

Now let us find out if the two series are cointegrated. After some experimentation,

it was found that the two series were related as in Table 14.9.
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Dependent Variable: D(LPCE)
Method: Least Squares
Date: 01/28/10 Time: 20:51
Sample (adjusted): 1970Q2 2008Q4
Included observations: 155 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 0.0055 0.0006 8.646287 0

D(LPDI) 0.313476 0.052866 5.929625 0

S1(–1) –0.0583 0.031487 –1.850423 0.0662

R-squared 0.187863 Mean dependent var 0.0078
Adjusted R-squared 0.177177 S.D. dependent var 0.0068
S.E. of regression 0.0061 Akaike info criterion –7.33019
Sum squared resid 0.0057 Schwarz criterion –7.27128
Log likelihood 571.0895 Durbin–Watson stat 1.716035
F-statistic 17.58023 Prob(F-statistic) 0

Note: S1(–1) is the error term ut–1 in Eq. (14.5). D stands for first difference.

Table 14.7 Error correction model of lPCE and lPDI.



Applying the unit root test to the residuals from this regression, we found that they

were stationary, suggesting that TB6 and TB3 are cointegrated, albeit around a qua-

dratic trend. We therefore obtained the ECM model of Table 14.10.

In this regression S1(–1) is the lagged error (correction) term from the regression in

Table 14.9. Since the TB rates are in percentage form, the findings here suggest that if

the 6-month TB rate was higher than the 3-month TB rate more than expected in the

244 Topics in time series econometrics

Dependent Variable: TB6
Method: Least Squares
Date: 02/03/10 Time: 12:06
Sample: 1981M01 2010M01
Included observations: 349

Coefficient Std. Error t-Statistic Prob.

C 0.606465 0.07682 7.894596 0

TB3 0.958401 0.00631 151.9409 0

@TREND –0.003 0.0005 –4.893455 0

@TREND^2 0 0 3.533231 0.001

R-squared 0.99595 Mean dependent var 5.352693
Adjusted R-squared 0.995915 S.D. dependent var 3.075953
S.E. of regression 0.19659 Akaike info criterion –0.404
Sum squared resid 13.33346 Schwarz criterion –0.35981
Log likelihood 74.49716 Durbin–Watson stat 0.363237
F-statistic 28283.37 Prob(F-statistic) 0

Table 14.9 Relationship between TB3 and TB6.
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Figure 14.2 Monthly three and six months Treasury Bill rates.



last month, this month it will be reduced by about 0.20 percentage points to restore the

equilibrium relationship between the two rates.9

From the cointegrating regression given in Table 14.9, we see that after allowing for

deterministic trends, if the 3-month TB rate goes up by one percentage point, the

6-month TB rate goes up by about 0.95 percentage point – a very close relationship be-

tween the two. From Table 14.10 we observe that in the short run a one percentage

point change in the 3-month TB rate leads on average to about 0.88 percentage point

change in the 6-month TB rate, which shows how quickly the two rates move together.

A question: why not regress TB-3 month on TB-6 month rate? If two series are

cointegrated, and if the sample size is large, it matters little which is the regressand.

Try to regress TB-3 month and TB-6 month rate and see what happens. Matters are

different if we are studying more than two time series.

Some caveats about the Engle–Granger approach

It is important to point out some drawbacks of the EG approach. First, if you have

more than three variables, there might be more than one cointegrating relationship.

The EG two step procedure does not allow for estimation of more than one

cointegrating regression. It may be noted here that if we are dealing with n variables,

there can be at most (n – 1) cointegrating relationships. To find that out, we will have

to use tests developed by Johansen. But we will not discuss the Johansen methodology

because it is beyond the scope of this book.10

Another problem with the EG test is the order in which variables enter the

cointegrating regression. When we have more than two variables, how do we decide

which is the regressand and which ones are the regressors? For example, if we have

three variables Y, X, and Z and suppose we regress Y on X and Z and find cointegration.
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Dependent Variable: D(TB6)
Method: Least Squares
Date: 02/03/10 Time: 12:26
Sample (adjusted): 1981M02 2010M01
Included observations: 348 after adjustments

Coefficient Std. Error t-Statistic Prob.

C –0.002 0.00573 –0.384308 0.701

D(TB3) 0.877882 0.014735 59.57784 0

S1(–1) –0.19968 0.029234 –6.830361 0

R-squared 0.911494 Mean dependent var –0.04
Adjusted R-squared 0.910981 S.D. dependent var 0.35623
S.E. of regression 0.106285 Akaike info criterion –1.6368
Sum squared resid 3.897314 Schwarz criterion –1.60359
Log likelihood 287.8026 Durbin–Watson stat 1.663899
F-statistic 1776.513 Prob(F-statistic) 0

Table 14.10 Error correction model for TB3 and TB6.

9 See any textbook on money and banking and read up on the term structure of interest rates.

10 The details can be found in S. Johansen, Statistical analysis of cointegrating vectors, Journal of

Economic Dynamics and Control, vol. 12, 1988, pp. 231–54. This is an advanced reference.



There is no guarantee that if we regress X on Y and Z we will necessarily find

cointegration.

Another problem with the EG methodology in dealing with multiple time series is

that we not only have to consider finding more than one cointegrating relationship,

but then we will also have to deal with the error correction term for each cointegrating

relationship. As a result, the simple, or bivariate, error correction model will not work.

We have to then consider what is known as the vector error correction model

(VECM), which is briefly discussed in Chapter 16.

All these problems can be handled if we use the Johansen methodology. But a fuller

discussion of this methodology is beyond the scope of this book.

14.8 Summary and conclusions

In this chapter we first examined the phenomenon of spurious regression which arises

if we regress a nonstationary time series on another nonstationary time series.

After citing several examples of spurious regression, we conducted a Monte Carlo

simulation study by artificially creating two random walk series, which are I(1), or

nonstationary, by nature. When we regressed one of these series on the other, we ob-

tained a “meaningful” relationship between the two, but we know a priori that there

should not be any relationship between the two series to begin with.

There is a unique case where a regression of a nonstationary series on another

nonstationary series does not result in spurious regression. This is the situation of

cointegration. If two time series have stochastic trends (i.e. they are nonstationary), a

regression of one on the other may cancel out the stochastic trends, which may suggest

that there is a long-run, or equilibrium, relationship, between them, even though indi-

vidually the two series are nonstationary.

We discussed the tests of cointegration, which are modifications of the

Dickey–Fuller (DF) and augmented Dickey–Fuller (ADF) tests and known as

Engle–Granger (EG) and augmented Engle–Granger (AEG) tests.

We illustrated cointegration by considering two examples. In the first, we consid-

ered the relationship between personal consumption expenditure (PCE) and personal

disposable income (PDI), both expressed in real terms. We showed that individually

the two economic time series are stationary around deterministic trends. We also

showed that the two series are cointegrated.

Keep in mind that unit root and nonstationarity are not synonymous. A stochastic

process with a deterministic trend is nonstationary but not unit root.

The second example we discussed in this chapter relates to the relationship be-

tween 3-month and 6-month US Treasury Bills. Using monthly data from January

1981 to January 2010 we showed that the two series are stationary around a quadratic

trend. We also showed that the two series are cointegrated, that is, there is a stable re-

lationship between the two.

In this chapter we also discussed some of the shortcomings of the EG methodology

and noted that once we go beyond two time series, we will have to use Johansen meth-

odology to test for cointegrating relationships among multiple variables.
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Exercises

14.1 Consider the relationship between PCE and PDI discussed in the text.

(a) Regress PCE on an intercept and trend and obtain the residuals from this re-

gression. Call it S1.

(b) Regress PDI on an intercept and trend and obtain residuals from this regres-

sion. Call it S2.

(c) Now regress S1 on S2. What does this regression connote?

(d) Obtain the residuals from the regression in (c) and test whether the residuals

are stationary. If they are, what does that say about the long-term relation-

ship between PCE and PDI?

(e) How does this exercise differ from the one we discussed in this chapter?

14.2 Repeat the steps in Exercise 14.1 to analyze the Treasury Bill rates, but make sure

that you use the quadratic trend model. Compare your results with those discussed in

the chapter.

14.3 Suppose you have data on real GDP for Mexico and the USA. A priori, would you

expect the two time series to be cointegrated? Why? What does trade theory have to

say about the relationship between the two? Obtain quarterly data on the two time

series and analyze them from the perspective of cointegration.11
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11 The data can be obtained from World Development Indicators, published by the World Bank. The data

are revised frequently. See http://www.worldbank.org/data/.



15
Asset price volatility: the ARCH and

GARCH models

Financial time series, such as stock prices, interest rates, foreign exchange rates, and

inflation rates, often exhibit the phenomenon of volatility clustering. That is, periods

of turbulence in which their prices show wide swings and periods of tranquility in

which there is relative calm. As Philip Franses notes:

Since such financial time series reflect the result of trading among buyers and sell-

ers at, for example, stock markets, various sources of news and other exogenous

economic events may have an impact on the time series pattern of asset prices.

Given that news can lead to various interpretations, and also given that specific eco-

nomic events like an oil crisis can last for some time, we often observe the large pos-

itive and large negative observations in financial time series to appear in clusters.1

One only has to consider the behavior of US stock markets in the wake of the esca-

lating oil prices in the first half of 2008; within a span of one year oil prices increased by

more than 100%. On 6 June 2008 the Dow Jones Index dropped by almost 400 points in

the wake of a ten dollar increase in the price of a barrel of oil that day; the price jumped

to $139 a barrel, when two days earlier it had dropped to $122 a barrel. Towards the

end of October 2008, oil price dropped to around $67 a barrel. Such gyrations in oil

prices have led to wide swings in stock prices.

On 29 September 2008 the Dow Jones Index fell by about 777.7 (the “lucky sevens”?)

points in the wake of the sub-prime mortgage loans crisis that led to the bankruptcies

of several financial institutions. Although the US Government announced a bailout

plan of $700 billion on 3 October 2008, on 6 October the stock market fell by almost

800 points before recovering and closing down by some 369 points. This time the cul-

prit was crisis in the credit markets. In October 2008 there were several days when the

Dow Jones Index went up or down by more than 300 points, indicating that the stock

market had become more volatile. In varying degrees this pattern seems to have con-

tinued through 2009 and 2010. For instance, the Dow Jones Index fell by 261 points on

16 July 2010 after rising for six trading days in a row.

Such swings in oil prices and credit crises have serious effects on both the real econ-

omy and the financial markets. An average investor is not only concerned about the

rate of return on his or her investment, but also about the risk of investment as well as
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the variability, or volatility, of risk. It is, therefore, important to measure asset price

and asset returns volatility.2

A simple measure of asset return volatility is its variance over time. If we have data

for stock returns over, say, a period of 1,000 days, we can compute the variance of daily

stock returns by subtracting the mean value of stock returns from their individual

values, square the difference and divide it by the number of observations. By itself it

does not capture volatility clustering because it is a measure of what is called uncondi-

tional variance, which is a single number for a given sample. It does not take into ac-

count the past history of returns. That is, it does not take into account time-varying

volatility in asset returns. A measure that takes into account the past history is known

as autoregressive conditional heteroscedasticity, or ARCH for short.

15.1 The ARCH model

We usually encounter heteroscedasticity, or unequal variance, in cross-sectional data

because of the heterogeneity among individual cross-section units that comprise

cross-sectional observations, such as families, firms, regions, and countries.

We also usually observe autocorrelation in time series data. But in time series data

involving asset returns, such as returns on stocks or foreign exchange, we observe

autocorrelated heteroscedasticity. That is, heteroscedasticity observed over differ-

ent periods is autocorrelated. In the literature such a phenomenon is called

autoregressive conditional heteroscedasticity (ARCH). In what follows we explore

the nature of ARCH, illustrating it with an example. We also consider several exten-

sions of the ARCH model.

To set the stage, consider the behavior of the daily dollar/euro exchange rate from 1

January 2004 to 8 May 2008, first discussed in Chapter 13. These rates are not continu-

ous because of holidays, market closures, and so on.

To get a glimpse of the daily dollar/euro exchange rate (EX), Figure 15.1 plots the

log of EX (LEX) for the sample period. It is common practice in financial econometrics

to plot the log of the exchange rate than the exchange rate itself, because changes in

logs represent relative changes or percentage changes if the relative changes are multi-

plied by 100.

As you can see, initially the EU was depreciating against the dollar, but later it

showed a steady appreciation against the dollar.3 But a closer look at the figure sug-

gests that the initial depreciation and then appreciation of EU was not smooth, which

is apparent from the jagged nature of the graph. This would suggest that there is con-

siderable volatility of the dollar/euro exchange rate.

This can be seen more vividly if we plot the changes in the LEX (Figure 15.2); as

noted, changes in the log values represent relative changes, or percentage changes if

multiplied by 100. For the purpose of discussion, we will refer to the log-changes in

asset prices as asset returns, in the present case daily returns on the dollar/euro
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2 It may be noted that asset prices are generally nonstationary, but the asset returns are stationary. But

this does not preclude asset returns being volatile. In Chapter 13 we discussed the nature of stationary and

nonstationary time series.

3 In 2010 the EU again started depreciating against the dollar, perhaps reflecting weakness in the EU

economies relative to the US economy.



exchange rate, as our data are daily (in the following figure D(LEX) denotes change in

the log of the dollar/euro exchange rate).

If you draw a horizontal line through 0.00, you will see clearly the volatility of

log-exchange rate changes: the amplitude of the change swings wildly from time to

time. Not only that, it seems there is a persistence in the swings that lasts for some
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time. That is, these swings seem to be autocorrelated. This is the heuristic idea behind

ARCH.

The variance of a random variable is a measure of the variability in the values of the

random variable. For our data, the mean of the daily exchange rate returns is about

0.000113 or about 0.0113% and its variance is about 0.0000351. But this variance does

not capture the volatility of the daily exchange rate return seen in Figure 15.2. This is

because the variance is measured as the sum of squared deviation of individual returns

from their mean value divided by the number of observations.4 As such, it does not

take into account the variation in the amplitudes noticed in Figure 15.2.

A simple way to measure the volatility is to run the following regression:

RET c ut t� � (15.1)

where RET is daily return and where c is a constant and ut represents the error term.5

Here we measure return as log changes in the exchange rate over successive days.

The constant c in this case measures simply the mean value of daily exchange rate

returns. Notice that we have not introduced any explanatory variables in Eq. (15.1), for

asset returns are essentially unpredictable.

The regression results are as follows:

RET

se

t
� .

( . )

�

�

0 000113

0 000122
(15.2)

As you can see, 0.000113 is the mean daily return, as noted before. For our purpose,

this regression is not important. But if you obtain residuals from this regression (et)

(which are simply the deviations of daily returns from their mean value) and square

them, you get the plot in Figure 15.3.

This shows wide swings in the squared residuals, which can be taken as an indicator

of underlying volatility in the foreign exchange returns. Observe that not only are

there clusters of periods when volatility is high and clusters of periods when volatility

is low, but these clusters seem to be “autocorrelated”. That is, when volatility is high, it

continues to be high for quite some time and when volatility is low, it continues to be

low for a while.

How do we measure this volatility? The ARCH model and its subsequent exten-

sions attempt to answer this question.

Consider the following simple linear regression model:

Y I X ut t t t| � � � �1 � ) (15.3)

This states that, conditional on the information available up to time (t – 1), the value of

the random variable Yt (exchange rate return here) is a function of the variable Xt (or a

vector of variables if there are more Xt variables) and ut.

In Eq. (15.3) we assume that
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4 More accurately, it should be divided by the degrees of freedom (n – 1), but in large samples it makes

little difference if we divide it by n.

5 There are two ways of measuring returns. (1)[( ) / ]EX EX EXt t t� +� �1 1 100 and (2)(ln ln )EX EXt t� +�1 100,

where EX is the exchange rate and t is time. Since our data are daily over a substantial number of days, there will

not be much difference between the two rates of return.



u I iid Nt t t| ~ ( , )�1
20 
 (15.4)

That is, given the information available up to time (t – 1), the error term is independ-

ently and identically normally distributed with mean value of 0 and variance of 
t
2 . In

the classical normal linear regression model it is assumed that 
 
t
2 2� – that is,

homoscedastic variance.

But to take into account the ARCH effect, and following Engle, we will let


 � �t tu2
0 1 1

2� � � (15.5)

That is, we assume that the error variance at time t is equal to some constant plus a

constant multiplied by the squared error term in the previous time period.6 Of course,

if �1 is zero, the error variance is homoscedastic, in which case we work in the frame-

work of the classical normal linear regression model. It is assumed that the coefficients

in this equation are positive because the variance cannot be a negative number. Also, it

is assumed that 0 11� �� for reasons that will be explained shortly.

After taking mathematical expectation on both sides of Eq. (15.3) � )� Xt is the con-

ditional mean equation. And Eq. (15.5) is called the (conditional) variance equation,

both conditional on the information set It–1. Equation (15.5) is known as the ARCH

(1) model, for it includes only one lagged squared value of the error term. But this

model can be easily extended to an ARCH (p) model, where we have p lagged squared

error terms, as follows:


 � � � �t t p t pu u u
t

2
0 1 1

2
2

2 2
2

� � � � �� ��
� (15.6)
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Figure 15.3 Squared residuals from regression (15.2).

6 R. F. Engel, Autoregressive conditional heteroscedasticity with estimates of the variance of United

Kingdom inflation, Econometrica, vol. 50, pp. 987–1007, 1982. Engle was first to develop the ARCH model.

Among other writings, he got the Nobel prize in economics for this contribution.



If there is an ARCH effect, it can be tested by the statistical significance of the esti-

mated �coefficients. If we are considering an ARCH (1) model, as in (15.5), we can use

the t test to test the statistical significance of the estimated � coefficient. If it signifi-

cantly different from zero, we can conclude that there is an ARCH effect.

To test the ARCH effect in (15.6), we can use the F test to test the hypothesis that

Null hypothesis: H0: � � �1 2 0� � � �� p (15.7)

Alternative Hypothesis: H1: At least one � coefficient is

statistically significantly different from zero.

Alternatively, to test Eq. (15.7), we can use the chi-square test as follows:

( ) ~n r R p� 2 2� (15.8)

where r = number of coefficients estimated. That is, the estimated R2 times the degrees

of freedom (n – r) follows the chi-square distribution with p degrees of freedom.7 If the

estimated chi-square value is statistically significant at the chosen level of significance,

we can conclude that there is significant ARCH effect. Alternatively, if the p value (the

exact level of significance) is sufficiently low, we can reject the null hypothesis.

Note that since a variance cannot be negative, in Eq. (15.6) we expect the � coeffi-

cients to be positive.

Since the us are not directly observable, we first estimate Eq. (15.3) and estimate u

as

� � �u Y Xt t t t� � �� ) (15.9)

and then estimate the following model:

� � � �u u u ut t t p t p t
2

0 1 1
2

2 1
2 2� � � � � �� � �� � � � .� (15.10)

That is, we regress the squared residuals at time t on its lagged values going up to p

previous period, the value of the p being determined empirically. Notice that in prac-

tice we replace 
t
2 by ut

2 which is replaced by its estimate, �ut
2 .

As you can see, the AR part of the ARCH model is so-called because in Eq. (15.10)

we are regressing squared residuals on its lagged values going back to p periods. The

CH part of ARCH is because variance in Eq. (15.10) is conditional on the information

available up to time (t – 1).

Estimation of the ARCH model: the least-squares approach

Once we obtain the squared error term from the chosen model, we can easily estimate

Eq. (15.10) by the usual least squares method. Of course, we have to decide about the

number of lagged terms in Eq. (15.10). This can be done on the basis of some criterion,

such as the Akaike or Schwarz information criterion, which is built into statistical

packages such as Eviews and Stata. We choose a model that gives the lowest value on

the basis of these criteria. This is the counterpart of the highest R2 in the linear regres-

sion model. Sometimes there is a conflict in the two information criteria, but most of

the time they give qualitatively similar conclusions.
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7 If n is very large relative to r, the left-hand side of Eq. (15.8) can be written as nR2.



To illustrate, using the dollar/euro exchange rate data we estimated an ARCH (8)

model, which gave the results in Table 15.1.

We chose an ARCH (8) model for illustrative purposes. In practice one rarely goes

for higher-order ARCH models because they consume too many degrees of freedom

(i.e. too many parameters need to be estimated). Besides, more economical models,

such as GARCH, can be easily estimated. We will discuss the GARCH model shortly.

A drawback of the least squares approach to estimate an ARCH model is that there

is no guarantee that all the estimated ARCH coefficients will be positive, which is evi-

dent from the results in Table 15.1. Remember that the (conditional) variance must be

positive. Another reason the least squares method is not appropriate for estimating

the ARCH model is that we need to estimate both the mean function and the variance

function simultaneously. This can be done with the method of maximum likelihood.

Estimation of the ARCH model: the maximum likelihood approach

As noted, one advantage of the ML method is that we can estimate the mean and vari-

ance functions simultaneously, instead of separated as under OLS. The mathematical

details of the ML method are somewhat involved, but statistical packages, such as

Stata and Eviews, have built-in routines to estimate the ARCH models.

Returning to our example, the ML estimates of the ARCH (8) model are given in

Table 15.2. The first part of the table gives the estimate of the mean equation and the

second half gives estimates of the coefficients of the variance equation. As you can see,
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Dependent Variable: Return
Method: Least Squares
Sample (adjusted): 10 2355
Included observations: 2346 after adjustments
Convergence achieved after 3 iterations

Coefficient Std. Error t-Statistic Prob.

C 0.000118 0.000124 0.949619 0.3424

AR(1) 0.005585 0.020678 0.270107 0.7871

AR(2) –0.001528 0.020671 –0.073936 0.9411

AR(3) –0.018031 0.020670 –0.872340 0.3831

AR(4) 0.053298 0.020660 2.579725 0.0099

AR(5) –0.035622 0.020648 –1.725156 0.0846

AR(6) 0.016990 0.020662 0.822254 0.4110

AR(7) 0.021674 0.020653 1.049456 0.2941

AR(8) –0.028401 0.020656 –1.374958 0.1693

R-squared 0.005679 Mean dependent var 0.000118
Adjusted R-squared 0.002275 S.D. dependent var 0.005921
S.E. of regression 0.005915 Akaike info criterion –7.418928
Sum squared resid 0.081756 Schwarz criterion –7.396830
Log likelihood 8711.403 Durbin–Watson stat 1.998549
F-statistic 1.668334 Prob(F-statistic) 0.101121

Note: Return is obtained as differences in LEX (see Footnote 4).

Table 15.1 OLS estimates of ARCH (8) model of dollar/euro exchange rate

returns.



all the lagged variance coefficients are positive, as expected; the first three coefficients

are not individually statistically significant, but the last five are. It seems there is an

ARCH effect in the dollar/euro exchange rate return. That is, the error variances are

autocorrelated. As we show below, this information can be used for the purpose of

forecasting volatility.

15.2 The GARCH model

Some of the drawbacks of the ARCH (p) model are as follows: first, it requires estima-

tion of the coefficients of p autoregressive terms, which can consume several degrees

of freedom. Secondly, it is often difficult to interpret all the coefficients, especially if

some of them are negative. Thirdly, the OLS estimating procedure does not lend itself

to estimate the mean and variance functions simultaneously. Therefore, the literature

suggests that an ARCH model higher than ARCH (3) is better estimated by the
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Dependent Variable: Return
Method: ML – ARCH (Marquardt) – Normal distribution
Sample (adjusted): 2 2355
Included observations: 2354 after adjustments
Convergence achieved after 6 iterations
Presample variance: backcast (parameter = 0.7)GARCH = C(2) + C(3)*RESID(–1)^2 +
C(4)*RESID(–2)^2 + C(5)*RESID(–3)^2 + C(6)*RESID(–4)^2 + C(7)*RESID(–5)^2 +
C(8)*RESID(–6)^2 +C(9)*RESID(–7)^2 + C(10)*RESID(–8)^2

Coefficient Std. Error z-Statistic Prob.

C 0.000168 0.000116 1.455799 0.1454

Variance Equation

C 2.16E–05 1.57E–06 13.76329 0.0000

RESID(–1)^2 0.003934 0.014396 0.273266 0.7846

RESID(–2)^2 0.016995 0.020147 0.843548 0.3989

RESID(–3)^2 0.030077 0.016471 1.826061 0.0678

RESID(–4)^2 0.058961 0.022441 2.627397 0.0086

RESID(–5)^2 0.061412 0.025193 2.437648 0.0148

RESID(–6)^2 0.088779 0.023935 3.709209 0.0002

RESID(–7)^2 0.058567 0.020293 2.886032 0.0039

RESID(–8)^2 0.076195 0.023278 3.273296 0.0011

R-squared* –0.000088 Mean dependent var 0.000113
Adjusted R-squared –0.003928 S.D. dependent var 0.005926
S.E. of regression 0.005938 Akaike info criterion –7.435345
Sum squared resid 0.082649 Schwarz criterion –7.410860
Log likelihood 8761.401 Hannan–Quinn criter. –7.426428
Durbin–Watson stat 1.995120

*The negative R2 is not important in the present situation, as the mean equation has no
explanatory variables.

Table 15.2 ML estimation of the ARCH (8) model.



GARCH model (Generalized Autoregressive Conditional Heteroscedasticity)

model,8 originally proposed by Tim Bollerslev.

In its simplest form, in the GARCH model we keep the mean equation (15.3) the

same, but modify the variance equation as follows:


 � � � 
t t tu2
0 1 1

2
2 1

2� � �� � (15.11)

Notice that here the conditional variance at time t depends not only on the lagged

squared error term at time (t – 1) but also on the lagged variance term at time (t – 1).

This is known as the GARCH (1,1) model. Although we will not prove it, it can be

shown that ARCH (p) model is equivalent to GARCH (1, 1) as p increases. Notice that

in the ARCH (p) given in Eq. (15.6) we have to estimate (p + 1) coefficients, whereas in

the GARCH (1,1) model given in Eq. (15.11) we have to estimate only three

coefficients.

The GARCH (1,1) model can be generalized to the GARCH (p,q) model with p

lagged squared error terms and q lagged conditional variance terms, but in practice

GARCH (1,1) has proved useful to model returns on financial assets.

Returning to our exchange rate example, the results of GARCH (1,1) model are

given in Table 15.3.

Comparing the ARCH (8) with GARCH (1,1), we see how GARCH (1,1) in effect

captures the eight lagged squared error terms in Table 15.2. This is not surprising, for

we have already mentioned that GARCH (1,1) is a short-cut method of modeling an

infinite ARCH process.
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Dependent Variable: Z
Method: ML – ARCH (Marquardt) – Normal distribution
Sample (adjusted): 2 2355
Included observations: 2354 after adjustments
Convergence achieved after 9 iterations
Presample variance: backcast (parameter = 0.7)GARCH = C(2) + C(3)*RESID(–1)^2 +
C(4)*GARCH(–1)

Coefficient Std. Error z-Statistic Prob.

C 0.000198 0.000110 1.797740 0.0722

Variance Equation

C 7.72E–08 5.02E–08 1.538337 0.1240

RESID(–1)^2 0.022788 0.004063 5.609174 0.0000

GARCH(–1) 0.975307 0.004377 222.8494 0.0000

R-squared –0.000205 Mean dependent var 0.000113
Adjusted R-squared –0.001482 S.D. dependent var 0.005926
S.E. of regression 0.005931 Akaike info criterion –7.472999
Sum squared resid 0.082659 Schwarz criterion –7.463205
Log likelihood 8799.720 Hannan–Quinn criter. –7.469433
Durbin–Watson stat 1.994884

Note: Z =d(lex) = first difference of log of LEX.

Table 15.3 GARCH (1,1) model of the dollar/euro exchange rate.

8 Tim Bollerslev, Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics,

vol. 31, 1986, pp. 307–27.



As you can see, in the variance equation both the lagged squared error term and the

lagged conditional variance term are individually highly significant. Since lagged con-

ditional variance affects current conditional variance, there is clear evidence that there

is a pronounced ARCH effect.

To sum up, there is clear evidence that the dollar/euro exchange rate returns exhibit

considerable time-varying and time-correlated volatility, whether we use the ARCH

or the GARCH model.

15.3 Further extensions of the ARCH model

The original ARCH (p) has been extended in several directions. We consider a few of

these variants, using our example.

The GARCH-M model

As noted before, an average investor is interested not only in maximizing the return on

his or her investment, but also in minimizing the risk associated with such investment.

Therefore one can modify the mean equation given in (15.3) by explicitly introducing

the risk factor, the conditional variance, to take into account the risk. That is, we now

consider the following mean function:

Y X ut t t t� � � �� ) ,
2 (15.12)

where 
t
2 is the conditional variance, as defined in Eq. (15.11).

This is called the GARCH-M (1,1) model. See how the risk factor, as measured by

the conditional variance, enters the conditional mean function.

Using Eviews, we obtained the results in Table 15.4.

The mean equation in this table now includes the risk factor, the conditional vari-

ance. This risk factor is statistically significant, suggesting that not only is there an

ARCH effect, but also that the mean return is directly affected by the risk factor.

Graphs of conditional variances of ARCH (8) and GARCH (1.1)
models

Since investors generally dislike uncertainty, it would be useful to forecast (condi-

tional) volatility. To see how this is done, return to Eq. (15.11) and suppose we want to

estimate volatility for the next period – that is,


 � � � 
t t tu� � � �1
2

0 1
2

2
2 (15.13)

The estimates of the �coefficients are given in Table 15.3. Using these estimates, we

can forecast conditional variance for the following and for subsequent periods.

Equation (15.13) can be easily generalized to give forecast volatility for j step or j pe-

riods ahead as:


 � � � 
t j t j� � �� � �2
0 1 2 1

2( ) (15.14)

In the long run, the so-called steady state variance can be obtained by equating all

variance terms to obtain:



�

� �
2 0

1 21
�

� �( )
(15.15)
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If ( )� �1 2 1� � , Eq. (15.15) gives the long-term volatility level of the GARCH(1,1)

model. From Table 15.4 we see that for our example the estimated ( ) .� �1 2 0 998� � ,

which is less than 1, but not by much.

Figure 15.4 gives some idea about the conditional variances estimated from the

ARCH (8) and GARCH (1,1) models: these two conditional variance series are quite

similar in appearance, which is not surprising because the GARCH model captures

higher-order ARCH terms, not only in ARCH(8) but beyond.

Since these two graphs are similar, and since the GARCH(1,1) model is more eco-

nomical, in practice we can concentrate on the GARCH model. What is important to

note is that forecasting conditional volatility can aid an investor in making his or her

investment decisions.

Further extensions of ARCH and GARCH models

In the preceding pages we have touched upon only a few variants of the ARCH and

GARCH models. But there are more, with acronyms like AARCH, SAARCH, TARCH,

NARCH, NARCHK and EARCH. It is beyond the scope of this book to delve into all

these esoteric models, not only because they will take us far afield but also because

some of the mathematics is quite involved. The interested reader may pursue the liter-

ature for further references.9
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Dependent Variable: RET
Method: ML – ARCH (Marquardt) – Normal distribution
Date: 10/18/08 Time: 15:50
Sample (adjusted): 2 2355
Included observations: 2354 after adjustments
Convergence achieved after 14 iterations
Presample variance: backcast (parameter = 0.7)GARCH = C(3) + C(4)*RESID(–1)^2 +
C(5)*GARCH(–1)

Coefficient Std. Error z-Statistic Prob.

GARCH –0.188763 0.095900 –1.968318 0.0490

C 0.078320 0.031583 2.479842 0.0131

Variance Equation

C 0.000803 0.000495 1.621984 0.1048

RESID(–1)^2 0.022472 0.003982 5.642678 0.0000

GARCH(–1) 0.975473 0.004327 225.4335 0.0000

R-squared 0.001512 Mean dependent var 0.013049
Adjusted R-squared –0.000189 S.D. dependent var 0.592711
S.E. of regression 0.592767 Akaike info criterion 1.736635
Sum squared resid 825.3740 Schwarz criterion 1.748878
Log likelihood –2039.020 Hannan–Quinn criter. 1.741094
F-statistic 0.889015 Durbin–Watson stat 1.998503
Prob(F-statistic) 0.469582

Table 15.4 GARCH-M (1,1) model of dollar/euro exchange rate return.

9 See, for example, Walter Enders, Applied Econometric Time Series, 2nd edn, Wiley, 2004; Chris Brooks,

Introductory Econometrics of Finance, Cambridge University Press, 2002; and I. Gusti Ngurah Agung, Time

Series Data Analysis Using Eviews, John Wiley & Sons (Asia), 2009.



15.4 Summary and conclusions

A distinguishing feature of financial time series such as stock prices, inflation rates,

and exchange rates is that they often exhibit volatility clustering – that is, periods in

which their prices or the return on them show wide swings for extended time periods

and periods over which there is relative calm. This results in correlation in error vari-

ance over time. To take into account such correlation, financial econometricians have

developed several models, beginning with ARCH (autoregressive conditional

heteroscedasticity). With daily data on the dollar/euro exchange rate over an extended

time period, we showed how the ARCH model takes into account volatility in asset

prices and asset returns.

Later incarnations of the ARCH model include GARCH, GARCH-M (GARCH in

mean), TGARCH (threshold GARCH), and EGARCH (exponential GARCH), each in-

troducing more versatility (and complexity) in the estimation of volatility. Fortunately,

software packages exist which can estimate these models with comparative ease.

Apart from the technical aspect of volatility, the topic is of practical interest to in-

vestors at all levels, for an investor is not only interested in obtaining a higher rate of

return, but also a steady (i.e. less volatile) rate of return.
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Figure 15.4 Comparison of the ARCH (8) and GARCH (1,1) models.



Exercise

15.1 Collect data on a stock index of your choice over a period of time and find out the

nature of volatility in the index. You may use ARCH, GARCH, or any other member of

the ARCH family to analyze the volatility.

Useful websites

The following websites provide several interesting data sets and references to other

websites that provide all kinds of macro- and micro-economic data:

WebEc: A most comprehensive library of economic facts and figures:

http://www.helsinki.fi/WebEc

Bureau of Economic Analysis (BEA): Excellent source of data on all kinds of eco-

nomic activities: http://www.bea.gov/

Business Cycle Indicators: Data on 256 economic time series:

http://www.globalexposure.com/bci.html

FRED Database: Federal Reserve Bank of St Louis, historical economic and social

data, which include interest rates, monetary and business cycle indicators, ex-

change rates, and so on. http://www.stls.frb.org.fed/

World Bank Data and Statistics: http://www.worldbank.org/data

Various economic data sets: http://economy.com/freelunch

Economic Time Series Data: http://economagic.com/

World Economic Indicators: http://devdata.worldbank.org/
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16
Economic forecasting

There are several areas in which economic forecasts have proved useful:1

1 Operations planning and control (e.g. inventory management, production plan-

ning, sales force management and the like)

2 Marketing (e.g. response of sales to different marketing schemes)

3 Economics (key economic variables, such as GDP, unemployment, consumption,

investment and interest rates)

4 Financial asset management (e.g. asset returns, exchange rates and commodity

prices)

5 Financial risk management (e.g. asset return volatility)

6 Business and government budgeting (revenue forecasts)

7 Demography (fertility and mortality rates)

8 Crisis management (probabilities of default, currency devaluations, military

coups, and so forth)

Based on past and current information, the objective of forecasting is to provide

quantitative estimate(s) of the likelihood of the future course of the object of interest

(e.g. personal consumption expenditure). For this purpose we develop econometric

models and use one or more methods of forecasting its future course.

Although there are several methods of forecasting, we will consider three promi-

nent methods of forecasting in this chapter: (1) regression models, (2) the

autoregressive integrated moving average (ARIMA) models, popularized by statisti-

cians Box and Jenkins and known as the Box–Jenkins (BJ) methodology,2 and (3) the

vector autoregression (VAR) models, advocated by Christopher Sims.3
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1 See Francis X. Diebold, Elements of Forecasting, Thompson-South-Western Publishers, 4th edn, 2007,

Chapter 1.

2 G. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, revised edn, Holden Day,

San Francisco, 1976.

3 Another method of forecasting that was popular in the 1970s and 1980s is the method of simultaneous

equation models. But this method has fallen out of favor because of its poor forecasting performance since

the OPEC oil embargos in the 1970s, although it is still used by governmental agencies and the Federal

Reserve Board. For a discussion of this method, see Gujarati/Porter, op cit., Chapters 18–20.



16.1 Forecasting with regression models

We have devoted a considerable amount of space in this book to various aspects of re-

gression analysis, but so far we have said little about the use of regression models for

forecasting purposes. For many users of regression analysis in business and govern-

ment, forecasting is probably the most important purpose of estimating regression

models. The topic of business and economic forecasting is vast and several specialized

books are written about this topic.4 We will only discuss the salient aspects of forecast-

ing using regression models. To keep things simple, and to use graphs, we will first

consider the following bivariate regression:

PCE B B PDI ut t t� � �1 2 (16.1)

where PCE = per capita personal consumption expenditure and PDI = per capita per-

sonal disposable (i.e. after-tax) income in chained 2005 dollars, and u is the error term.

We will call this regression the consumption function. The slope coefficient in this re-

gression represents the marginal propensity to consume (MPC) – that is, the incre-

mental consumption expenditure for an additional dollar’s increase in income. To

estimate this regression, we obtained aggregate data on these variables for the US for

1960–2008. See Table 16.1 on the companion website.

To estimate the consumption function, initially we use the observations from

1960–2004 and save the last four observations, called the holdover sample, to evaluate

the performance of the estimated model. We first plot the data to get some idea of the

nature of the relationship between the two variables (Figure 16.1). This figure shows
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Figure 16.1 Per capita PCE and PDI, USA, 1960–2004.

4 See, for instance, Diebold, op cit., Michael K. Evans, Practical Business Forecasting, Blackwell

Publishing, Oxford, UK., 2003, and Paul Newbold and Theodore Bos, Introductory Business and Economic

Forecasting, 2nd edn, South-Western Publishing Company, Cincinnati, Ohio, 1994.



that there is almost a linear relationship between PCE and PDI. Fitting a linear regres-

sion model to the data, we obtained the results in Table 16.2.

These results show that if PDI increases by a dollar, the average consumption ex-

penditure goes up by about 95 cents, that is, the MPC is 0.95. By the standard statistical

criteria, the estimated model looks good, although there is strong evidence of positive

serial correlation in the error term because the Durbin–Watson value is so low. We

will return to this point later.

To guard against the possibility of spurious regression, we subjected the residuals

from regression (16.1) to unit root tests and found that the there was no evidence of

unit root, even though individually PCE and DPI time series were nonstationary

(verify this).

From this table, you will see that the estimated mean consumption expenditure

function is:

PCE PDIt t
� . .� � �1083 978 0 9537 (16.2)

What do we do with this “historical” regression? We can use it to forecast the future

value(s) personal consumption expenditure. Suppose we want to find out

E PCE PDI( | )2005 2005 , that is the population or true mean personal consumption ex-

penditure value in 2005 given the value of total household expenditure (X) for 2005,

which is $31,318 (note that our sample regression is based on the period 1960–2004).

Before we undertake this task, we need to learn some special terms used in forecast-

ing such as: (1) point and interval forecasts, (2) ex post (after the fact) and ex ante

(viewed in advance or anticipated) forecasts, and (3) conditional and unconditional

forecasts. We discuss these terms briefly.

1 Point forecasts and interval forecasts: in point forecasts we provide a single value

for each forecast period, whereas in interval forecasts we obtain a range, or an in-

terval, that will include the realized value with some probability. In other words,

the interval forecast provides a margin of uncertainty about the point forecast.

Economic forecasting 263

IV

Dependent Variable: PCE
Method: Least Squares
Date: 07/20/10 Time: 16:45
Sample: 1960 2004
Included observations: 45

Variable Coefficient Std. Error t-Statistic Prob.

C –1083.978 193.9579 –5.588729 0.0000

PDI 0.953768 0.009233 103.2981 0.0000

R-squared 0.995986 Mean dependent var 18197.91
Adjusted R-squared 0.995893 S.D. dependent var 5515.914
S.E. of regression 353.4907 Akaike info criterion 14.61702
Sum squared resid 5373095. Schwarz criterion 14.69731
Log likelihood –326.8829 Durbin–Watson stat 0.299775
F-statistic 10670.51 Prob(F-statistic) 0.000000

Table 16.2 Estimates of the consumption function, 1960–2004.



2 Ex post and ex ante forecasts: to understand the distinction, consider Figure

16.2.5

In the estimation period we have data on all the variables in the model, in the ex

post forecast period we also know the values of the regressand and regressors (this

is the holdover period). We can use these values to get some idea about the perfor-

mance of the fitted model. In the ex ante forecast we estimate the values of the

depend variable beyond the estimation period but we may not know the values of

the regressors with certainty, in which case we may have to estimate these values

before we can forecast.

3 Conditional and unconditional forecasts: in conditional forecasts, we forecast

the variable of interest conditional on the assumed values of the regressors. Recall

that all along we have conducted our regression analysis, conditional on the given

values of the regressors. This type of conditional forecasting is also known as sce-

nario analysis or contingency analysis.

In unconditional forecasts, we know the values of the regressors with certainty

instead of picking some arbitrary values of them, as in conditional forecasting. Of

course, that is a rarity; it actually involves what Diebold calls the forecasting the

right-hand side variables (i.e. regressors) problem.6 For the present purposes we

will work with conditional forecasts.

With these preliminaries, let us estimate the point forecast of consumption expen-

diture for 2005, given the value of per capita PDI for 2005 of $31,318 billions.

Now it can be shown that the best mean prediction of Y2005 given the X value is

given by:

PCE b b PDI�

. . ( )

2005 1 2 2005

1083 978 0 9537 31318

2878

� �

� � �

� 3 998

28784

.

�

(16.3)

That is, the best mean predicted value of personal consumption expenditure in 2005,

is $28,784 billion, given the value of PDI $31,378 billion. From Table 16.1 we see that

the actual value of PCE for 2005 was $29,771 billion. So the actual value was greater

than the estimated value by $987 billion. We can call this the forecast error. Naturally,

we do not expect the estimated regression line to forecast the actual values of the

regressand without some error.

Since the PCE figure given in Eq. (16.3) is an estimate, it is subject to error as we just

noted. So what we need is an estimate of the forecast error that we are likely to make in
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Estimation period Ex-post forecast period Ex-ante forecast period

1960–2004 2005–2008 2009 forward

Figure 16.2 Types of forecasting.

5 The following discussion is based on Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Models

and Economic Forecasts, 3rd edn, McGraw-Hill, New York, 1991, Chapter 8.

6 For solutions to this problem, see Diebold, op cit., p. 223.



using the figure in Eq. (16.3) as the true mean value of consumption expenditure for

2005. Now it can be shown that if the error term in Eq. (16.1) is normally distributed,

then, letting Y = PCE and X = PDI, it can be shown that �Y2005 is normally distributed

with mean equal to ( )B B X1 2 2005� and

var( � )
( )

( )
Y

n

X X

X Xi
2005

2 2005
2

2

1
� �

�

�

�

�
�

�

�
�


�
(16.4)

where X is the sample mean of the X values in our sample period of 1960–2004, 
2 is

the variance of the error term u and n is the sample size.

Since we do not observe the true variance of u we estimate it from the sample as
� /( )
2

2 2� ��e nt , following our discussion in Chapter 1.

Using this information, and given the X value for 2005, we can establish, say, a 95%

confidence interval for true E(Y2005) as follows:

Pr[ � ( � ) ( ) � ( �
/ /Y t se Y E Y Y t se Y2005 2 2005 2005 2005 2� � � �� � 2005

95

)]

%�
(16.5)

where se Y( � )2005 is the standard error obtained from Eq. (16.4), and where � �5%.

Notice that in establishing this confidence interval, we are using the t distribution than

the normal distribution because we are estimating the true error variance. This all fol-

lows from the linear regression theory discussed in Chapter 1.

Using Eq. (16.4), we obtain se Y( � )2005 (verify this). Therefore, the 95% confidence in-

terval for E(Y2005) is ($28,552 billion, $29,019 billion), although the single best esti-

mate is $28,784 billion. (Note: t�/ .2 2 02� , for 43 df).

We will have to compute such confidence interval for each E Y X( | ) in our sample. If

we connect such confidence intervals, we obtain what is known as a confidence band.

This tedious calculation can be avoided if we use a software package such as Stata or

Eviews. Using Eviews, we obtain the confidence band for our example (Figure 16.3).

The solid line in this figure is the estimated regression line (curve) and the two

broken lines show the 95% confidence band for it. If you look at the formula for the
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Forecast: PCEF
Actual: PCE
Forecast sample: 1960 2004
Included observations: 45
Root Mean Squared Error 345.5461
Mean Absolute Error 291.6878
Mean Abs. Percent Error 1.795941
Theil Inequality Coefficient 0.009095

Bias Proportion 0.000000
Variance Proportion 0.001005
Covariance Proportion 0.998995

Figure 16.3 Forecast band for mean PCE.



variance of the estimated mean values, you will see that this variance increases as X

value against which the forecast is made moves further away from it mean value. In

other words, the forecast error will increase as we move further away from the mean

value of the regressor. This would suggest forecasting E Y X( | ) for X values much

greater than the mean value of X will lead to substantial forecast errors.

The accompanying table gives some measures of the quality of the forecast, namely,

the root mean square, mean absolute error, mean absolute percentage error and the

Theil Inequality Coefficient, whose value lies between 0 and 1 – the closer it is to

zero, the better is the model. These measures are discussed briefly in the Appendix to

this chapter. These forecasting performance measures are useful if we are comparing

two or more methods of forecasting, as we will discuss shortly.

We can extend this analysis to multiple regressions also, but in that case we need to

use matrix algebra to express forecast variancs. We leave this topic for the references.

In the regression results given in Table 16.2 we found that the Durbin–Watson sta-

tistic was significant, suggesting that the error term suffers from first-order positive

serial correlation. It can be shown that if we can take into account serial correlation in

the error term, the forecast error could be made smaller, but we will not go into the

mathematics of it.7 However, Eviews can estimate model (16.1) by allowing for

autocorrelation in the error term. For example, if we assume that the error term fol-

lows the first-order autoregressive scheme [AR(1)] discussed in Chapter 6, namely,

u ut t t� � � � ��� . �1 1 1; , where � is the coefficient of (first-order) autocorrelation

and . is the white noise error term, we obtain the results in Table 16.3.

Compared with the model in Table 16.2 we see that the marginal propensity to con-

sume has changed slightly, but its standard error is much higher. From this table we

also see that the coefficient of the first-order autocorrelation is about 0.81.8
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Dependent Variable: PCE
Method: Least Squares
Date: 07/20/10 Time: 20:34
Sample (adjusted): 1961 2004
Included observations: 44 after adjustments
Convergence achieved after 8 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C –1592.481 611.4801 –2.604305 0.0128

PDI 0.975013 0.025965 37.55095 0.0000

AR(1) 0.812635 0.079793 10.18430 0.0000

R-squared 0.998872 Mean dependent var 18387.16
Adjusted R-squared 0.998817 S.D. dependent var 5429.892
S.E. of regression 186.7336 Akaike info criterion 13.36299
Sum squared resid 1429647. Schwarz criterion 13.48464
Log likelihood –290.9858 Durbin–Watson stat 2.433309
F-statistic 18158.75 Prob(F-statistic) 0.000000

Table 16.3 Consumption function with AR(1).

7 See Robert S. Pindyck and Daniel L. Rubinfeld, op cit., pp. 190–2.

8 Readers are encouraged to try higher order AR schemes, such as AR(2), AR(3), to see if the results given

in Table 16.3 change.



Using the results in Table 16.3, we obtain the 95% confidence band for the esti-

mated regression line – see Figure 16.4. If you compare this figure with Figure 16.3,

you will see that the model in Table 16.3 does slightly better than the model in Table

16.1 because it does take into account explicitly serial correlation of the first order,

supporting the statement made earlier that if we take into account serial correlation

the forecast interval (band) will be narrower than without it. This can be seen by com-

paring the performance statistics accompanying the two figures.

16.2 The Box–Jenkins methodology: ARIMA modeling

The basic idea underlying the BJ methodology to forecasting is to analyze the probabil-

istic, or stochastic, properties of economic time series on their own under the philoso-

phy “let the data speak for themselves”. Unlike traditional regression models, in which

the dependent variable Yt is explained by k explanatory variables X1, X2, X3, ..., Xk, the

BJ time series models allow Yt to be explained by the past, or lagged, values of Yt itself

and the current and lagged values of ut, which is an uncorrelated random error term

with zero mean and constant variance 
2 – that is, a white noise error term.

The BJ methodology has several ways of forecasting a time series, which we discuss

sequentially. We will first discuss the different BJ approaches in general terms and

then consider a specific example, namely the dollar/euro exchange rate we first con-

sidered in Chapter 13.

The BJ methodology is based on the assumption that the time series under study is

stationary. We discussed the topic of stationarity in Chapter 13 and pointed out the

importance of studying stationary time series. Let us represent a stationary time series

symbolically as Yt.

The autoregressive (AR) model

Consider the following model:
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Root Mean Squared Error 268.6680
Mean Absolute Error 217.6526
Mean Abs. Percent Error 1.242707
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Variance Proportion 0.010655
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Figure 16.4 95% confidence band for PCE with AR(1).



Y B B Y B Y B Y ut t t p t p t� � � � � �� � �0 1 1 2 2 � (16.6)

where ut is a white noise error term.

Model (16.6) is called an autoregressive model of order p, AR (p), for it involves re-

gressing Y at time t on its values lagged p periods into the past, the value of p being de-

termined empirically using some criterion, such as the Akaike information criterion.

Recall that we discussed autoregression when we discussed the topic of auto-

correlation in Chapter 6.

The moving average (MA) model

We can also model Yt as follows:

Y C C u C u C ut t t q t q� � � � �� �0 1 2 1 � (16.7)

That is, we express Yt as a weighted, or moving, average of the current and past white

noise error terms. Model (16.7) is known as the MA (q) model, the value of q being de-

termined empirically.

The autoregressive moving average (ARMA) model

We can combine the AR and MA models and form what is called the ARMA (p,q)

model, with p autoregressive terms and q moving average terms. Again, the values of p

and q are determined empirically.

The autoregressive integrated moving average (ARIMA) model

As noted, the BJ methodology is based on the assumption that the underlying time

series is stationary or can be made stationary by differencing it one or more times. This

is known as the ARIMA (p,d,q) model, where d denotes the number of times a time

series has to be differenced to make it stationary. In most applications d = 1 – that is,

we take only the first differences of the time series. Of course, if a time series is already

stationary, then an ARIMA (p,d,q) becomes an ARMA (p,q) model.

The practical question is to determine the appropriate model in a given situation.

To answer this question, the BJ methodology follows a four-step procedure:

Step 1: Identification: Determine the appropriate values of p, d and q. The main

tools in this search are the correlogram and partial correlogram.

Step 2: Estimation: Once we identify the model, the next step is to estimate the pa-

rameters of the chosen model. In some cases we can use the method ordinary

least-squares (OLS), but in some cases we have to resort to nonlinear (in parameter)

estimation methods. Since several statistical packages have built-in routines, we do

not have to worry about the actual mathematics of estimation.

Step 3: Diagnostic checking: BJ ARIMA modeling is more an art than science be-

cause considerable skill is required to choose the right ARIMA model, for we may

not be absolutely sure that the chosen model is the correct one. One simple test of

this is to see if the residuals from the fitted model are white noise; if they are, we can

accept the chosen model, but if they are not, we will have to start afresh. That is why

the BJ methodology is an iterative process.

Step 4: Forecasting: The ultimate test of a successful ARIMA model lies in its fore-

casting performance, within the sample period as well as outside the sample period.
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16.3 An ARMA model of IBM daily closing prices, 3 January
2000 to 31 October 2002

In Chapter 13 we showed that the logs of the IBM daily closing prices (LCLOSE) were

nonstationary, but the first differences of these prices (DLCLOSE) were stationary.

Since the BJ methodology is based on stationary time series, we will work with

DLCLOSE instead of LCLOSE to model this time series, where DLCLOSE stands for

the first differences of LCLOSE.

To see which ARMA model fits DLCLOSE, and following the BJ methodology, we

show the correlogram of this series up to 50 lags (Table 16.4), although the picture

does not change much if we consider more lags.

This correlogram produces two types of correlation coefficient: autocorrelation

(AC) and partial autocorrelation (PAC). The ACF (autocorrelation function) shows

correlation of current DLCOSE with its values at various lags. The PACF (partial

autocorrelation function) shows the correlation between observations that are k peri-

ods apart after controlling for the effects of intermediate lags (i.e. lags less than k).9

The BJ methodology uses both these correlation coefficients to identity the type of

ARMA model that may be appropriate in a given case.

Some theoretical patterns of ACF and PACF are shown in Table 16.5. Notice that

the ACFs and PACFs of AR(p) and MA(q) have opposite patterns: in the AR(p) case

the ACF declines geometrically or exponentially but the PCAF cuts off after a certain

number of lags. The opposite happens to an MA(q) process.

Keep in mind that in a concrete application we may not observe the neat patterns

shown in Table 16.5. Some trial and error is unavoidable in practical applications.

Returning to our example, we see that both ACF and PAC functions alternate be-

tween negative and positive values and do not exhibit an exponential decay for any

sustained period.

A careful examination of the correlogram shows that neither the ACF nor PACF

shows the neat pattern described in Table 16.5. To see which correlations are statisti-

cally significant, recall that the standard error of a (sample) correlation coefficient is

given by 1 1 739 0 037/ / .n � � , where n is the sample size (see Eq. (13.2)). Therefore

the 95% confidence interval for the true correlation coefficients is about 0 196 0 037 . ( . )

= (–0.0725 to 0.0725). Correlation coefficients lying outside these bounds are statisti-

cally significant at the 5% level. On this basis, it seems both ACF and PACF correla-

tions at lags 4, 18, 22, 35 and 43 seem to be statistically significant (see the confidence

bands in the preceding figure).

Since we do not have the clear-cut pattern of the theoretical ACF and PACF out-

lined in Table 16.5, we can proceed by trial and error.

First, suppose we fit an AR model at lags 4, 18, 22, 35 and 43. The results are shown

in Table 16.6. As you can see, the coefficients of AR(35) and AR(43) are not individu-

ally statistically significant. However, it should be noted that when the residuals from

the preceding regression were tested for serial correlation, we did not find any up to

five lags. So the model in Table 16.6 may be a candidate for further consideration.
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9 This is akin to the partial regression coefficient in a multiple regression. In a k variable regression model

the coefficient Bk of the kth regressor gives the impact of that variable on the regressand after holding, or

allowing, for the influence of the other regressors in the model.
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Sample: 1/03/2000 10/31/2002
Included observations: 686

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

.|. | .|. | 1 –0.059 –0.059 2.4132 0.120

.|. | .|. | 2 –0.058 –0.061 4.7046 0.095

.|. | .|. | 3 –0.016 –0.024 4.8875 0.180

.|* | .|* | 4 0.083 0.077 9.6393 0.047

.|. | .|. | 5 –0.007 0.001 9.6706 0.085

.|. | .|. | 6 0.017 0.026 9.8727 0.130

.|. | .|. | 7 0.017 0.023 10.080 0.184

.|. | .|. | 8 –0.044 –0.047 11.446 0.178

.|. | .|. | 9 0.018 0.016 11.665 0.233

.|. | .|. | 10 0.036 0.031 12.574 0.248

.|. | .|. | 11 –0.050 –0.049 14.292 0.217

.|. | .|. | 12 –0.012 –0.007 14.396 0.276

.|. | .|. | 13 0.038 0.030 15.415 0.282

.|. | .|. | 14 0.012 0.010 15.519 0.344

.|. | .|. | 15 0.021 0.036 15.821 0.394

.|. | .|. | 16 0.052 0.056 17.695 0.342

.|. | .|. | 17 0.050 0.058 19.455 0.303

*|. | *|. | 18 –0.103 –0.089 26.984 0.079

.|. | .|. | 19 0.002 –0.013 26.987 0.105

.|. | .|. | 20 0.030 0.010 27.609 0.119

.|. | .|. | 21 –0.025 –0.033 28.064 0.138

*|. | *|. | 22 –0.109 –0.103 36.474 0.027

.|. | .|. | 23 –0.011 –0.031 36.561 0.036

.|. | .|. | 24 0.011 0.001 36.651 0.047

*|. | *|. | 25 –0.069 –0.066 40.020 0.029

*|. | *|. | 26 –0.068 –0.075 43.369 0.018

.|. | .|. | 27 –0.030 –0.039 43.998 0.021

.|. | .|. | 28 –0.025 –0.026 44.444 0.025

.|. | .|. | 29 0.006 –0.007 44.470 0.033

.|. | .|. | 30 0.071 0.066 48.139 0.019

.|. | .|. | 31 –0.005 0.021 48.154 0.025

.|. | .|. | 32 –0.036 –0.018 49.115 0.027

.|. | .|. | 33 –0.029 –0.043 49.731 0.031

.|. | .|. | 34 0.004 –0.009 49.744 0.040

*|. | *|. | 35 –0.079 –0.069 54.268 0.020

.|. | .|. | 36 0.008 –0.012 54.317 0.026

.|. | .|. | 37 –0.050 –0.057 56.155 0.023

*|. | .|. | 38 –0.070 –0.059 59.698 0.014

.|. | .|. | 39 0.046 0.057 61.247 0.013

.|. | .|. | 40 –0.019 –0.036 61.514 0.016

.|. | .|. | 41 –0.003 0.023 61.520 0.021

Table 16.4 ACF and PACF of DCLOSE of IBM stock prices.
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob

.|. | .|. | 42 –0.035 0.004 62.392 0.022

.|* | .|. | 43 0.076 0.058 66.617 0.012

.|. | .|. | 44 0.006 –0.001 66.640 0.015

.|. | .|. | 45 0.020 0.017 66.937 0.019

.|. | .|. | 46 –0.026 –0.041 67.432 0.021

.|. | .|. | 47 0.032 0.007 68.185 0.023

.|. | .|. | 48 0.001 –0.006 68.186 0.029

.|. | .|. | 49 –0.000 –0.015 68.186 0.036

.|. | .|. | 50 –0.014 –0.015 68.327 0.043

Table 16.4 (continued)

Type of model Typical pattern of ACF Typical pattern of PACF

AR(p) Decays exponentially or with
damped sine wave pattern or both

Significant spikes through
lags p

MA(q) Significant spikes through lags q Declines exponentially

ARMA(p,q) Exponential decay Exponential decay

Table 16.5 Typical patterns of ACF and PACF.

Dependent Variable: D(LCLOSE)
Method: Least Squares
Sample (adjusted): 3/03/2000 8/20/2002
Included observations: 643 after adjustments
Convergence achieved after 3 iterations

Coefficient Std. Error t-Statistic Prob.

C –0.000798 0.000966 –0.825879 0.4092

AR(4) 0.096492 0.039101 2.467745 0.0139

AR(18) –0.073034 0.039623 –1.843242 0.0658

AR(22) –0.084777 0.039642 –2.138565 0.0329

AR(35) –0.055990 0.039381 –1.421768 0.1556

AR(43) 0.052378 0.039310 1.332428 0.1832

R-squared 0.032112 Mean dependent var –0.000811
Adjusted R-squared 0.024515 S.D. dependent var 0.026409
S.E. of regression 0.026084 Akaike info criterion –4.445734
Sum squared resid 0.433385 Schwarz criterion –4.404059
Log likelihood 1435.303 Durbin–Watson stat 2.089606
F-statistic 4.226799 Prob(F-statistic) 0.000869

Note: AR(4,18,22,3543) denotes the lagged terms included in the model.

Table 16.6 An AR (4,18,22,35,43) model of DCLOSE.



Since AR(35) and AR(43) coefficients were not significant, we can drop these from

consideration and reestimate the model with only AR(4), AR(18) and AR(22) terms,

which gives the results in Table 16.7. The residuals from this regression also seem to be

randomly distributed.

If we have to choose between the two preceding models, we can use the Akaike or

Schwarz information criterion to make the choice. Although there is not a big differ-

ence in the values of the two criteria in the two tables, numerically the information

values are slightly more negative for the model in Table 16.7 than in Table 16.6; re-

member that on the basis of the information criteria, we choose the model with the

lowest value of these criteria – in the present instance the value that is most negative.

On this basis it seems that the model in Table 16.7 is preferred over the one in Table

16.6. Also, the model in Table 16.7 is more parsimonious than the one Table 16.6, for

we have to estimate only four instead of six parameters.

Initially we tried the counterpart of Table 16.6, using five lagged MA terms at lags 4,

18, 22, 35 and 43, but the coefficients of lags 35 and 43 were not statistically significant.

Therefore we estimated the MA equivalent of Table 16.7, and obtained the results in

Table 16.8. The residuals from this regression were randomly distributed.

Which model should we choose? AR(4,18,22) or MA(4,18,22)?

Since the values of the Akaike and Schwarz information criteria were lowest for the

MA model, we can choose this over the AR model, although the difference between

the two is not very great.

Recall that the MA model is simply a weighted average of the stochastic error term.

But since the first differences of the log closing prices of IBM are stationary, it makes

sense to use the MA model.

But before we sign off on the MA model, let us see if we can develop a model using

both AR and MA terms. After some experimentation, we obtained the model in Table

16.9.

Using the Akaike and Schwarz criteria, it seems this is the “best” model. The residu-

als from this model were tested for unit root and it was found that there was no unit
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Dependent Variable: D(LCLOSE)
Method: Least Squares
Sample (adjusted): 2/03/2000 8/20/2002
Included observations: 664 after adjustments
Convergence achieved after 3 iterations

Coefficient Std. Error t-Statistic Prob.

C 0.000937 0.000944 –0.992942 0.3211

AR(4) 0.101286 0.038645 2.620899 0.0090

AR(18) 0.082566 0.039024 –2.115760 0.0347

AR(22) 0.091977 0.039053 –2.355157 0.0188

R-squared 0.027917 Mean dependent var –0.000980
Adjusted R-squared 0.023499 S.D. dependent var 0.026416
S.E. of regression 0.026104 Akaike info criterion –4.447488
Sum squared resid 0.449720 Schwarz criterion –4.420390
Log likelihood 1480.566 Durbin–Watson stat 2.102050
F-statistic 6.318233 Prob(F-statistic) 0.000315

Table 16.7 An AR (4,18,22) model of DCLOSE.



root, suggesting that the residuals from this model are stationary. Also, on the basis of

the Breusch–Godfrey test of autocorrelation discussed in Chapter 6, it was found that,

using five lags, there was no serial correlation in the residuals.

To sum up, it would seem that ARMA (4,22,4,22) is probably an appropriate model

to depict the behavior of the first differences of the logs of daily closing IBM prices

over the sample period.
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Dependent Variable: D(LCLOSE)
Method: Least Squares
Sample (adjusted): 1/04/2000 8/20/2002
Included observations: 686 after adjustments
Convergence achieved after 7 iterations
MA Backcast: 12/03/1999 1/03/2000

Coefficient Std. Error t-Statistic Prob.

C –0.000887 0.000878 –1.011247 0.3123

MA(4) 0.086628 0.038075 2.275167 0.0232

MA(18) –0.099334 0.038682 –2.567953 0.0104

MA(22) –0.112227 0.038958 –2.880715 0.0041

R-squared 0.027366 Mean dependent var –0.000928
Adjusted R-squared 0.023088 S.D. dependent var 0.026385
S.E. of regression 0.026079 Akaike info criterion –4.449579
Sum squared resid 0.463828 Schwarz criterion –4.423160
Log likelihood 1530.206 Durbin–Watson stat 2.104032
F-statistic 6.396312 Prob(F-statistic) 0.000282

Table 16.8 An MA (4,18,22) model of DLCOSE.

Dependent Variable: D(LCLOSE)
Method: Least Squares
Sample (adjusted): 2/03/2000 8/20/2002
Included observations: 664 after adjustments
Convergence achieved after 12 iterations
MA Backcast: 1/04/2000 2/02/2000

Coefficient Std. Error t-Statistic Prob.

C –0.000985 0.001055 –0.934089 0.3506

AR(4) –0.229487 0.061210 –3.749152 0.0002

AR(22) –0.641421 0.062504 –10.26202 0.0000

MA(4) 0.361848 0.060923 5.939484 0.0000

MA(22) 0.618302 0.055363 11.16808 0.0000

R-squared 0.048013 Mean dependent var –0.000980
Adjusted R-squared 0.042235 S.D. dependent var 0.026416
S.E. of regression 0.025852 Akaike info criterion –4.465365
Sum squared resid 0.440423 Schwarz criterion –4.431493
Log likelihood 1487.501 Durbin–Watson stat 2.111835
F-statistic 8.309156 Prob(F-statistic) 0.000002

Table 16.9 ARMA [(4,22),(4,22)] model of DLCLOSE.



Forecasting with ARIMA

Once a particular ARMA model is fitted, we can use it for forecasting, for this is the

primary objective of such models. There are two types of forecast: static and dynamic.

In static forecasts, we use the actual current and lagged values of the forecast variable,

whereas in dynamic forecasts, after the first period forecast, we use the previously

forecast values of the forecast variable.

Using the model in Table 16.9, the static forecast is shown in Figure 16.5.10 This

figure gives the actual and forecast values of logs of closing IBM prices, as well as the

confidence interval of forecast. The accompanying table gives the same measures of

the quality of the forecast that we saw before, namely, the root mean square, mean ab-

solute error, mean absolute percentage error and the Theil Inequality Coefficient.

For our example, this coefficient is practically zero, suggesting that the fitted model is

quite good. This can also be seen from Figure 16.5, which shows how closely the actual

and forecast values track each other.

The picture of the dynamic forecast is given in Figure 16.6. Eviews output gives the

same measures of forecast quality as in the previous figures.

On the basis of the Theil coefficient, the dynamic forecast does not do as well as the

static forecast. Also the 95% confidence band increases rapidly as we travel along the

time axis. The reason for this is that we use the previous forecast values in computing

subsequent forecasts and if there is an error in the previously forecast value(s), that

error will be carried forward.

Before proceeding further, the reader is encouraged to acquire more recent data

and see if the pattern observed in the current sample continues to hold in the new

sample. Since the ARIMA modeling is an iterative process, the reader may want to try

other ARIMA models to see if they can improve on the models discussed in this

section.
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Theil Inequality Coefficient 0.002788
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Variance Proportion 0.001310
Covariance Proportion 0.998685

Figure 16.5 Actual and forecast IBM prices.

10 Although Table 16.6 is based on the first differences of IBM log closing prices, the forecasts given in

the following figures are for the level of log closing prices. Eviews does this automatically.



16.4 Vector autoregression (VAR)

In the classical simultaneous equation models involving m endogenous (i.e. depend-

ent) variables, there are m equations, one for each endogenous variable.11 Each equa-

tion may contain one or more endogenous variables and some exogenous variables.

Before these equations can be estimated, we have to make sure that the problem of

identification is solved, that is, whether the parameters or set of parameters can be

consistently estimated. In achieving identification, often arbitrary restrictions are im-

posed by excluding some variables from an equation, which may be present in the

other equations in the system.

This practice was severely criticized by Sims, who argued that if there are m endoge-

nous variables, they should all be treated on an equal footing; there should not be any

distinction between endogenous and exogenous variables.12 So each equation should

have the same number of regressors. It is for this reason that Sims developed the VAR

model.

A bivariate VAR13

To explain the ideas behind VAR, we will first consider a system of two variables. In

Chapter 14 we discussed the relationship between 3-month and 6-month T-bills

(Treasury Bills) from the point of view of cointegration. Here we discuss it from the
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Variance Proportion 0.006474
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Figure 16.6 Dynamic forecast of IBM stock prices.

11 In this book we do not discuss the simultaneous equations models, for they are no longer used as

extensively as they were in the 1960s and 1970s. For an overview, see Gujarati/Porter, op cit., Chapters

18–20.

12 C. A. Sims, Macroeconomics and reality, Econometrica, 1980, vol. 48, pp. 1–48.

13 In mathematics a vector is any quantity possessing direction. For our purpose, we can arrange the

values of a variable in a column, called a column vector. Since in VAR we are dealing with more than one

variable, we can arrange the values of each variable in a column. As we are dealing with such columned or

vector values, we call the system of studying such column vectors a VAR system.



point of view of forecasting the two rates, using the VAR methodology. For this pur-

pose, consider the following two equations:

TB A B TB C TB ut j t j
j

j p

j t j
j
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where TB3 and TB6 are three and six-month T-bill rates, and where the us are white

noise error terms, called impulses or innovations or shocks in the language of VAR.

Notice these features of the bivariate VAR given in the preceding equations:

1 The bivariate system resembles a simultaneous equation system, but the funda-

mental difference between the two is that each equation contains only its own

lagged values and the lagged values of the other variables in the system. But no

current values of the two variables are included on the right-hand side of these

equations.

2 Although the number of lagged values of each variable can be different, in most

cases we use the same number of lagged terms in each equation.

3 The bivariate VAR system given above is known as a VAR(p) model, because we

have p lagged values of each variable on the right-hand side. If we had only one

lagged value of each variable on the right-hand side, it would be a VAR(1) model; if

two-lagged terms, it would be a VAR(2) model; and so on.

4 Although we are dealing with only two variables, the VAR system can be extended

to several variables. Suppose we introduce another variable, say, the Federal Funds

rate. Then we will have a three-variable VAR system, each equation in the system

containing p lagged values of each variable on the right-hand side of each

equation.

5 But if we consider several variables in the system with several lags for each vari-

able, we will have to estimate several parameters, which is not a problem in this

age of high-speed computers and sophisticated software, but the system becomes

quickly unwieldy.

6 In the two-variable system of Eqs. (16.8) and (16.9), there can be at most one

cointegrating, or equilibrium, relationship between them. If we have a three-vari-

able VAR system, there can be at most two cointegrating relationships between

the three variables. In general, an n-variable VAR system can have at most (n – 1)

cointegrating relationships.

Finding out how many cointegrating relationships exist among n variables requires

the use of Johansen’s methodology, which is beyond the scope of this book. However,

software packages such as Stata and Eviews can handle this relatively easily.

The cointegrating relationship may have some theoretical basis. In our example, it

is the term structure of interest rates: the relationship between short and long-term

interest rates.

Since our objective here is to introduce the basics of VAR, we will stick with the

two-variable VAR system.
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Since we have 349 monthly observations on the two Treasury bill rates, we have

plenty of leeway about the number of lagged terms we can introduce in the model. In-

troducing too few lagged terms will lead to specification errors. Introducing too many

lagged terms will consume several degrees of freedom, not to mention the problem of

collinearity. So we will have to proceed by trial and error and settle on the number of

lagged terms on the basis of the Akaike or Schwarz information criteria.

Since financial markets are supposed to be efficient, we need not introduce too

many lagged terms in the two equations. This is especially so in the interest rate mar-

kets because of arbitrage operations.

Whatever the choice of the lagged terms introduced in the two equations, a critical

requirement of VAR is that the time series under consideration are stationary. Here we

have three possibilities:

First, both TB3 and TB6 time series are individually I(0), or stationary. In that case

we can estimate each equation by OLS.

Second, both TB3 and TB6 are I(1) then we can take the first differences of the two

variables, which, as we know, are stationary. Here too we can use OLS to estimate

each equation individually.

Third, if the two series are I(1), but are cointegrated, then we have to use the error

correction mechanism (ECM) that we discussed in Chapter 14. Recall that ECM

combines the long-run equilibrium with short-run dynamics to reach that equilib-

rium. Since we are dealing with more than one variable in a VAR system, the

multivariate counterpart of ECM is known as the vector error correction model

(VECM).

Now the estimation of the VAR system given in Eqs. (16.8) and (16.9), using the

VECM approach, involves three steps:

Step 1: We first estimate the cointegrating relation between the two rates. From

Chapter 14 we know that the cointegrating relation is given by

TB B B TB B t B t ut t t6 31 2 3 4
2� � � � � (16.10)

The results of this regression are given in Table 16.10. These results show that, al-

lowing for linear and quadratic trends, there is a statistically significant positive re-

lationship between the two rates. If TB3 goes up by 1 percentage point, on average,

TB6 goes up by about 0.96 percentage points, ceteris paribus. The results also show

that both the interest rates have been trending downward, but they are trending

down at an increasing rate, which is clear from Figure 14.2.

Step 2: From this regression we obtain the residuals, et, which are given by the

relation:

et = TB6t – 0.6064 – 0.9584 TB3t + 0.0026t – 0.0000043t2 (16.11)

Provided that et is stationary, we know that et in Eq. (16.11) is the error correction

(EC) term.14
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the hypothesis that the slope coefficient in this regression is zero (i.e. there is a unit root). Using the data the

reader can verify that the unit root hypothesis can be convincingly rejected, thus establishing that the error

term in Eq. (16.10) is indeed stationary.



Step 3: Now we estimate (16.8) and (16.9) using the EC term as follows, which is the

VEC model:

%TB e vt t t6 1 2 1 1� � ��� � (16.12)

%TB e vt t t3 3 4 1 2� � ��� � (16.13)

You will see how VEC ties short-run dynamics to long-run relations via the EC

term. In these two equations, the slope coefficients are known as error correction

coefficients, for they show how much %TB6 and %TB3 adjust to “equilibrating”

error in the previous period, et–1.

Notice carefully how the short-term behavior of the two TB rates is linked to their

long-term relationship via the EC term. If, for example, �2 is positive, TB6 was below

its equilibrium value in the previous period and hence in the current period it must be

adjusted upward. On the other hand, if it is negative, TB6 was above its equilibrium

value so that in the current period it will be adjusted downward. Similar comments

apply to TB3.

It should be noted that the slope coefficients in the preceding two regressions will

have opposite signs because there is only one equilibrium relation between the two

rates.

The results of regressions, given in shortened form, are as follows:

%TB e

t

t t6 0 0400 0 0545

2 0928 05582

1� � �
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�. .

( . )( . )
(16.14a)

%TB e

t

t t3 0 0430 01962

2 0714 15523
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� �

�. .

( . )( . )
(16.14b)

where figures in parentheses are t ratios.

The slope coefficients in both these VEC models are statistically insignificant, indi-

cating that the two interest rates adjust to each other very quickly.
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Dependent Variable: TB6
Method: Least Squares
Sample: 1981M01 2010M01
Included observations: 349

Coefficient Std. Error t-Statistic Prob.

C 0.606465 0.076820 7.894596 0.0000

TB3 0.958401 0.006308 151.9409 0.0000

@TREND –0.002585 0.000528 –4.893455 0.0000

@TREND^2 4.43E–06 1.25E–06 3.533231 0.0005

R-squared 0.995950 Mean dependent var 5.352693
Adjusted R-squared 0.995915 S.D. dependent var 3.075953
S.E. of regression 0.196590 Akaike info criterion –0.403995
Sum squared resid 13.33346 Schwarz criterion –0.359811
Log likelihood 74.49716 Durbin–Watson stat 0.363237
F-statistic 28283.37 Prob(F-statistic) 0.000000

Table 16.10 Relationship between TB6 and TB3.



You might wonder that we started the VAR model given in Eqs. (16.8) and (16.9),

with one lagged term for each variable, and ended with the VEC model given in Eqs.

(16.12) and (16.13) – they do not look alike. But this difference is more apparent than

real, for we can show that they are in fact equivalent.

To see this, look at Eq. (16.12):
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Collecting terms, it can be seen that Eq. (16.15) is precisely of the form Eq. (16.9). A

similar equation can be written for TB3t.

The point of this exercise is to show that we are in fact estimating a VAR model, but

we explicitly take into account the error correction mechanism following Granger’s

Representation Theorem, albeit in the context of multivariate time series.

Forecasting with VAR

The primary interest in time series models is forecasting. We showed earlier how

ARIMA models can be used for forecasting. We now consider VAR for the same pur-

pose. But unlike ARIMA, which dealt with a univariate time series, we now deal with

two or more time series simultaneously.

We continue with our TB3 and TB6 time series to show how VAR forecasting is

done. For simplicity, and with a slight change in notation, we consider a VAR (1)

model, which is:

TB A A TB A TB A t ut t t t3 3 61 2 1 3 1 4� � � � �� � (16.16)

TB B B TB B TB B t ut t t t6 3 61 2 1 3 1 4 2� � � � �� � (16.17)

where t is the trend variable.15

Having estimated the two-variable VAR, we denote the estimated values of the co-

efficients by as and bs. We obtained these estimates using the sample data from time

period 1 to end of time period (t). Now suppose we want to forecast the values of TB3

and TB6 beyond sample period, t + 1, t + 2, ..., (t + n), where n is specified.

We can proceed as following, using TB3. The forecast for time (t + 1) is given by

TB A A TB A TB A t ut t t t3 3 6 11 1 2 3 4 1� �� � � � � �( ) (16.18)

Since we do not know what the value of the error term in period (t + 1) will be, we

put it equal to zero because u is random anyhow. We do not know the parameter

values either, but we can use the estimated values of these parameters from the sample

data. So we actually estimate
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TB a a TB a TB a tt t t
� ( )3 3 6 11 1 2 3 4� � � � � � (16.19)

Thus, to forecast TB3 in period t + 1, we use the actual values of TB3 and TB6 in

period t, which is the last observation in the sample. Note that, as usual, a hat over a

symbol represents an estimated value.

We follow the same procedure to forecast TB6 in period (t + 1), namely,

TB b b TB b TB b tt t t
� ( )6 3 6 11 1 2 3 4� � � � � � (16.20)

To forecast TB3 for period t + 2, we follow the same procedure, but modify it as

follows:

TB a a TB a TB a tt t t
� � � ( )3 3 6 22 1 2 1 3 1 4� � �� � � � � (16.21)

Notice carefully that in this equation we use the forecast values of TB3 and TB6 from

the previous period and not the actual values because we do not know them.

As you can sense, this procedure produces dynamic forecasts. Also, note that if we

make a forecast error in the first period, that error will be carried forward because,

after the first period of forecast, we use the forecast value in the previous period as

input on the right-hand side of the above equation.

Of course, this way of forecasting manually is very tedious. But packages like Stata

can do this easily, using the fcast command. To save space we will not present the re-

sults for our example. It may be noted that the fcast command will also compute confi-

dence intervals for the forecast values.

16.5 Testing causality using VAR: the Granger causality test

VAR modeling has been used to shed light on the notion of causality, a deeply philo-

sophical question with all kinds of controversies. As we noted in our discussion of re-

gression analysis, the distinction between the dependent variable Y and one or more X

variables, the regressors, does not necessarily mean that the X variables “cause” Y.

Causality between them, if any, must be determined externally, by appealing to some

theory or by some kind of experimentation.16

However, in regressions involving time series data the situation may be different be-

cause, as one author puts it,

...time does not run backward. That is, if event A happens before event B, then it is

possible that A is causing B. However, it is not possible that B is causing A. In other

words, events in the past can cause events to happen today, future events cannot.17

This line of thinking is probably behind the so-called Granger causality test.

Granger causality test

To explain the Granger causality test, we will look at the consumption function exam-

ple discussed in Section 16.1 from the point of Granger causality. The question we now

ask is: What is the relationship between per capita personal consumption expenditure
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16 Experimental economics is a growing field of research. For an overview, see James H. Stock and Mark

W. Watson, Introduction to Econometrics, 2nd edn, Pearson/Addison Wesley, Boston, 2007, Chapter 13.

Very soon you will see books on “Experimetrics”.

17 Gary Koop, Analysis of Economic Data, John Wiley & Sons, New York, 2000, p. 175.



(PCE) and per capita personal disposable income (PDI), both expressed in real term

(2005 chained dollars)? Does PCE PDI& or does PDI PCE& , where the arrow points

to the direction of causality? For empirical purposes, we will use the logs of these vari-

ables because the slope coefficients can be interpreted as elasticities.

The Granger test involves estimating the following pairs of regressions:

LPCE LPCE LPDI t ut i
i

m

t i j
j

m

t j t� � � �
�

�
�

�	 	� ) �
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1 1 (16.22)
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where L stands for logarithm and t is the time or trend variable and where it is assumed

that the error terms u t1 and u t2 are uncorrelated.

Notice that the two equations represent a bivariate VAR. Each equation contains

the lags of both variables in the system; the number of lagged terms included in each

equation is often a trial and error process.

Now we distinguish four cases.

1 Unidirectional causality from LPCE to LPDI (LPCE LPDI& ) occurs if the esti-

mated /j in Eq. (16.23) are statistically different from zero as a group and the set of

estimated )j coefficients in Eq. (16.22) is not different from zero.

2 Unidirectional causality from LPDI to LPCE (LPDI LPCE& ) is indicated if the set

of)j coefficients in Eq. (16.22) is statistically different from zero and the set of /j is

not statistically different from zero.

3 Feedback or bilateral causality is indicated when the sets of LPCE and LPDI coef-

ficients are statistically significantly different from zero in both regressions.

4 Independence is suggested when the sets of LPCE and LPDI coefficients are not

statistically significant in either of the regressions.

To implement the test, consider regression (16.22). We proceed as follows:

1 Regress current LPCE on all lagged LPCE terms and other variables, if any (such as

trend), but do not included the lagged LPDI terms in this regression. We call this

the restricted regression.18 From this regression we obtain the restricted residual

sum of squares, RSSr.

2 Now reestimate Eq. (16.22) including the lagged LPDI terms. This is the unre-

stricted regression. From this regression obtain the unrestricted residual sum of

squares, RSSur.

3 The null hypothesis H0 is that: ) ) )1 2 0� � � �� m – that is, the lagged LPDI

terms do not belong in the regression.

4 To test the null hypothesis, we apply the F test, which is:

F
RSS RSS m

RSS n k

r ur

ur
�

�
�

( )/

/( )
(16.24)
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which has m and (n – k) df, where m is the number of lagged LPDI terms, k is the

number of parameters estimated in the unrestricted regression, and n is the

sample size.

5 If the computed F value exceeds the critical F value at the chosen level of signifi-

cance, we reject the null hypothesis. In this case the LPDI lagged terms belong in

the LPCE equation, which is to say LPD causes LPCE.

These steps can be repeated for Eq. (16.23) to find out if LPCE causes LPDI.

Before we implement the Granger test, we need to consider several factors:

1 The number of lagged terms to be introduced in the Granger causality tests is an

important practical question, for the direction of causality may depend critically

on the number of lagged terms included in the model. We will have to use the

Akaike, Schwarz or similar criterion to determine the length of the lags. Some trial

and error is inevitable.

2 We have assumed that the error terms entering the Granger test are uncorrelated.

If this is not the case, we will have to use appropriate error transformation as dis-

cussed in the chapter on autocorrelation.

3 We have to guard against “spurious” causality. When we say that LPCE causes

LPDI (or vice versa), it is quite possible that there is a “lurking” variable, say inter-

est rate, that causes both LPCE and LPDI. Therefore the causality between LPCE

and LPDI may in fact be due to the omitted variable, the interest rate. One way to

find this out is to consider a three-variable VAR, one equation for each of the three

variables.

4 The critical assumption underlying the Granger causality test is that the variables

under study, such as LPCE and LPDI, are stationary. In our case, it can be shown

that both LPCE and LPDI are individually nonstationary. So, strictly speaking, we

cannot use the Granger test.

5 However, while individually nonstationary, it is possible that the variables in ques-

tion are cointegrated. In that situation, as in the case of univariate nonstationary

variables, we will have to use the error correction mechanism (ECM). This is be-

cause if LPCE and LPDI are cointegrated, then following the Granger Representa-

tion Theorem, either LPCE must cause LPDI or LPDI must cause LPCE.19

To see if LPCE and LPDI are cointegrated, we estimated the (cointegrating) regres-

sion of Table 16.11. This regression shows that the elasticity of PCE with respect to

PDI is about 0.71, which is statistically significant. The trend coefficient, which is also

statistically significant, suggests that the rate of growth in LPCE is about 0.76% per

year.

When the residuals from this regression were tested for unit root, it was found that

the residuals were stationary.20 Therefore we can conclude that the two time series,

while individually nonstationary, are cointegrated.

In view of this finding we can conduct the Granger causality test, but we must use

the error correction mechanism. This can be done as follows:
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19 See Gary Koop, Analysis of Financial Data, John Wiley & Sons, West Sussex, England 2006, Chapter

11.

20 This was with no intercept and trend.
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where %, as usual, is the first difference operator and where et–1 is the lagged residual

term from the cointegrating regression given in Table 16.11, which is nothing but the

error correction (EC) term.

As is clear from Eq. (16.25), there are now two sources of causation for LPCE: (1)

through the lagged values of LPDI and/or (2) through the lagged value of the

cointegrating vector (i.e. the EC term). The standard Granger test neglects the latter

source of causation.

Therefore the null hypothesis H0: ) ) ) �1 2 0� � � � �� q can be rejected if any of

these coefficients are nonzero or if � � 0. In other words, even if all the ) coefficients

are zero, but the coefficient of the lagged EC term is nonzero, we can reject the hypoth-

esis that LPDI does not cause LPCE. This is because the EC term includes the impact

of LPDI.

To test the null hypothesis that lagged LPDIs do not cause LPCE, we proceed as

follows:

1 Estimate Eq. (16.25) by OLS and obtain the residual sum of squares from this re-

gression (RSS); call it the unrestricted RSSur, because we include all the terms in

the regression.

2 Re-estimate Eq. (16.25), dropping all the lagged terms of LPDI and the EC term.

Obtain the RSS from this reduced regression; call it RSS restricted, RSSr.

Now apply the F test, as in Eq. (16.24), and reject the null hypothesis if the computed

F value exceeds the critical F value at the chosen level of significance.

Note that the difference between the standard Granger causality test and the “ex-

tended” causality test is due to the presence of the EC term in Eq. (16.25).
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Dependent Variable: LPCE
Method: Least Squares
Date: 07/21/10 Time: 13:30
Sample: 1960 2004
Included observations: 45

Variable Coefficient Std. Error t-Statistic Prob.

C 2.589374 0.476107 5.438637 0.0000

LPDI 0.709795 0.050779 13.97807 0.0000

@TREND 0.007557 0.001156 6.537171 0.0000

R-squared 0.998228 Mean dependent var 9.762786
Adjusted R-squared 0.998143 S.D. dependent var 0.311154
S.E. of regression 0.013408 Akaike info criterion –5.721653
Sum squared resid 0.007550 Schwarz criterion –5.601209
Log likelihood 131.7372 Hannan–Quinn criter. –5.676753
F-statistic 11827.74 Durbin–Watson stat 0.619973
Prob(F-statistic) 0.000000

Table 16.11 Regression of LPCE on LPDI and trend.



The practical question in estimating Eq. (16.25) is the number of lagged terms in

this equation. Since we have annual data, we decided to include only one lagged term

of each variable on the right-hand side.21 The results are as follows:

Notice that the lagged error term %LPDI( )�1 is not significant, but the EC term is

highly significant. We re-estimated the model in Table 16.12, dropping the lagged

LPDI and EC terms and on the basis of the F test it was found that both the lagged LPDI

and EC terms belong in the model. This would suggest that LPCE is caused either by

the lagged LPDI term or the lagged EC term or both.

We repeated the above exercise with LPDI as the dependent variable (i.e. Eq.

(16.23)) to find out if lagged LPCE or lagged EC or both caused LPDI. The conclusion

was that they indeed caused LPDI.

What all this says is that there is bilateral causality between LPCE and LPDI. At the

macroeconomics level, this finding should not be surprising, for aggregate income and

aggregate consumption are mutually dependent.

16.6 Summary and conclusions

The primary goal of this chapter was to introduce the reader to four important topics

in time series econometrics, namely, (1) forecasting with linear regression models, (2)

univariate time series forecasting with Box–Jenkins methodology, (3) multivariate

time series forecasting using vector autoregression, and (4) the nature of causality in

econometrics.

Linear regression models have long been used in forecasting sales, production, em-

ployment, corporate profits and a host of other economic topics. In discussing
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Dependent Variable: D(LPCE)
Method: Least Squares
Date: 07/21/10 Time: 13:45
Sample (adjusted): 1962 2004
Included observations: 43 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.013772 0.004440 3.101368 0.0036

D(LPCE(–1)) 0.579602 0.240720 2.407785 0.0209

D(LPDI(–1)) 0.135031 0.241895 0.558220 0.5799

S2(–1) 0.511126 0.192531 2.654766 0.0114

R-squared 0.248628 Mean dependent var 0.025026
Adjusted R-squared 0.190830 S.D. dependent var 0.016628
S.E. of regression 0.014958 Akaike info criterion –5.478748
Sum squared resid 0.008726 Schwarz criterion –5.314915
Log likelihood 121.7931 Hannan–Quinn criter. –5.418331
F-statistic 4.301676 Durbin–Watson stat 1.831083
Prob(F-statistic) 0.010274

Note: D (=%) is the first-difference operator.

Table 16.12 Granger causality with EC.

21 We also introduced two lagged terms of LPCE and LDPI, but the substantive results did not change.



forecasting with linear regression, we distinguished between point and interval fore-

casts, ex post and ex ante forecasts, and conditional and unconditional forecasts. We il-

lustrated these with an example relating real per capita consumption expenditure in

relation to real per capita disposable income in the USA for the period 1960–2004 and

saved the observations for 2005 to 2008 to see how the fitted model performs in the

post the estimation period. We briefly discussed forecasting with autocorrelated

errors.

We then discussed the ARIMA method of forecasting, which is popularly known as

the Box–Jenkins (BJ) methodology. In the BJ approach to forecasting, we analyze a

time series strictly on the basis its past history or purely moving average of random

error term or both. The name ARMA is a combination of AR (autoregressive) and MA

(moving average) terms. It is assumed that the time series under study is stationary. If

it is not stationary, we make it stationary by differencing it one or more times.

ARIMA modeling is a four-step procedure: (1) Identification, (2) Estimation, (3) Di-

agnostic checking and (4) Forecasting. In developing an ARIMA model, we can look at

the features of some of the standard ARIMA models and try to modify them in a given

case. Once a model is identified, it is estimated. To see if the fitted model is satisfac-

tory, we subject it to various diagnostic tests. The key here is to see if the residuals from

the chosen model are white noise. If they are not, we start the four-step procedure

once again. Thus the BJ methodology is an iterative procedure.

Once an ARIMA model is finally chosen, it can be used for forecasting future values

of the variable of interest. This forecasting can be static as well as dynamic.

To deal with forecasting two or more time series, we need to go beyond the BJ meth-

odology. Vector autoregressive models (VARs) are used for this purpose. In VAR we

have one equation for each variable and each equation contains only the lagged values

of that variable and the lagged values of all other variables in the system.

As in the case of the univariate time series, in VAR we also require the time series to

be stationary. If each variable in the VAR is already stationary, each equation in it can

be estimated by OLS. If each variable is not stationary, we can estimate VAR only in the

first differences of the series; rarely do we have to difference a time series more than

once. However, if individual variables in VAR are nonstationary, but are cointegrated,

we can estimate VAR by taking into account the error correction term, which is ob-

tained from the cointegrating regression. This leads to vector error correction model

(VECM).

We can use the estimated VAR model for forecasting. In such forecasting we not

only use information on the variable under consideration but also all the variables in

the system. The actual mechanics is tedious, but software packages now do this

routinely.

VAR modes can also be used to shed light on causality among variables. The basic

idea behind VAR causality testing is that the past can cause the present and the future,

but not the other way round. Granger causality uses this concept. In the PCE and PDI

example, if the lagged values of PDI better forecast the current values of PCE than the

lagged values of PCE alone, we may contend that PDI (Granger) causes PCE. Similarly,

if the lagged values of PCE better forecast the current values of PDI than the lagged

values of PDI alone, we may say that PCE (Granger) causes PDI. These are instances of

unilateral causality. But it is quite possible that there is bilateral causality between the

two in that PCE causes PDI and PDI causes PCE.
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In establishing causality, we must make sure that the underlying variables are sta-

tionary. If they are not, we have to difference the variables and run the causality test on

the differenced variables. However, if the variables are nonstationary, but are inte-

grated, we need to use the error correction term to account for causality, if any.

Exercises

16.1 Estimate regression (16.1) using the logs of the variables and compare the results

with those obtained in Table 16.2. How would you decide which is a better model?

16.2 Refer to the IBM stock price ARIMA model discussed in the text. Using the data

provided, try to come up with an alternative model and compare your results with

those given in the text. Which model do you prefer, and why?

16.3 Replicate your model used in the preceding exercise using more recent data and

comment on the results

16.4 Suppose you want to forecast employment at the national level. Collect quarterly

employment data and develop a suitable forecasting model using ARIMA methodol-

ogy. To take into account seasonal variation, employment data are often presented in

seasonally adjusted form. In developing your model, see if it makes a substantial differ-

ence if you use seasonally adjusted vs. the raw data.

16.5 Develop a suitable ARIMA model to forecast the labor force participation rate

for females and males separately. What considerations would you take into account in

developing such a model? Show the necessary calculations and explain the various di-

agnostic tests you use in your analysis.

16.6 Collect data on housing starts and develop a suitable ARIMA model for forecast-

ing housing starts. Explain the procedure step by step.

16.7 Refer to the 3-month and 6-month Treasury Bills example discussed in the text.

Suppose you also want to include the Federal Funds Rate (FFR) in the model. Obtain

the data on FFR for comparable time period and estimate a VAR model for the three

variables. You can obtain the data from the Federal Reserve Bank of St Louis.

(a) How many cointegrating relationships do you expect to find among the

three-variables?22 Show the necessary calculations.

(b) Suppose you find two cointegrating relationships. How do you interpret

them?

(c) Would you have to include one or two error correction terms in estimating

the VAR?

(d) What is the nature of causality among the three variables? Show the neces-

sary calculations.
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22 Consult the manuals for Stata or Eviews to learn about Johansen’s method of estimating the number of

cointegrating vectors in multivariate time series.



Appendix

Measures of forecast accuracy23

Measures of forecast accuracy are based on forecast errors. Some of the commonly

used measures are as follows. Let

Yt = value of the forecast variable Y at time t.

Yt h t� , = forecast value of Y h periods ahead, forecast being made at time t

Yt h� = actual value of Y at time (t + h)

et h t� , = forecast error

Y Y

Y

t h t h t

t h

� �

�

� , = pt h t� , percentage forecast error

Then the various measures of forecast accuracy are as follows:

Mean Error (ME) =
1

1T
et h t

T

�	 , (1)

which is the average error made in forecasting Y over the forecast horizon, 1 to T. The

lower the value of ME, the better is the accuracy of the forecast.

Error Variance (EV) =
( ),e ME

T

t h t
T

� �	 2
1 (2)

which measures the dispersion of forecast errors.

The lower the value of EV, the better is the accuracy of the forecast

Neither ME nor EV provides an overall accuracy measure of forecast, but the fol-

lowing measures do.

Mean Squared Error (MSE) =
1 2

1T
e

t h t

T

�	 ,
(3)

Mean Squared Percent Error (MSPE) =
1 2

1T
p

t h t

T

�	 ,
(4)

Root Mean Square Error (RMSE) =
1 2

1T
e

h t t

T

�	 ,
(5)

Root Mean Square Percent Error =
1 2

1T
p

t h t

T

�	 ,
(6)

Mean Absolute Error =
1

1T
et h t

T

| |,�	 (7)

Economic forecasting 287

IV

23 For details, see Francis X. Diebold, op cit., pp. 260–3.



Mean Absolute Percent Error =
1

1T
pt h t

t

t T

| |,�
�

�

	 (8)

Note: Measures (5) and (6) preserve the units in which the variables are measured. If

the forecast errors are measured in dollars, MSE, for example, will be measured in

squared dollars, but RMSE will be measured in dollars.

Theil’s U-Statistic =
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which is the ratio of the 1-step ahead MSE obtained from a forecasting method com-

pared to the MSE of a random walk forecast in which Y Yt t� �1 .

Theil Inequality Coefficient =
( � ) /

� / /

Y Y h
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2
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2
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2
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This coefficient lies between 0 and 1, 0 indicating perfect fit.
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17
Panel data regression models

The regression models discussed in the preceding 16 chapters primarily used either

cross-sectional or time series data. Each of these types of data has its unique features. In

this chapter we discuss the panel data regression models – that is, models that study

the same group of entities (individuals, firms, states, countries, and the like) over time.1

Some well-known examples of panel data sets are:

1 The Panel Study of Income Dynamics (PSID): This is conducted by the Institute

of Social Research at the University of Michigan. Started in 1968, each year the in-

stitute collects data on some 500 families abut various socioeconomic and demo-

graphic variables.

2 Survey of Income and Program Participation (SIPP): This survey is conducted

by the Bureau of the Census of the US Department of Commerce. Four times a

year respondents are interviewed about their economic conditions.

3 The German Socio-Economic Panel (GESOEP): It studied 1,761 individuals

every year between 1984 and 2002. It collected information on each individual

about year of birth, gender, life satisfaction, marital status, labor earnings, and

annual hours of work.

4 National Longitudinal Survey of Youth (NLSY): NLSY, conducted by the US De-

partment of Labor, is a set of surveys designed to gather information at multiple

points in time on the labor market activities and other significant life events of sev-

eral groups of men and women.

There are several such surveys that are conducted by governments and private

agencies in many countries.

17.1 The importance of panel data

In discussing the advantages of panel data over pure cross-sectional data or pure time

series data, Baltagi lists the following factors:2

1 Since panel data deals with individuals, firms, states, countries and so on over

time, there is bound to be heterogeneity in these units, which may be often

unobservable. The panel data estimation techniques can take such heterogeneity
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1 For more details and examples on panel data regression models, see Gujarati/Porter, op cit., Chapter 16.

2 Badi H. Baltagi, Econometric Analysis of Panel Data, John Wiley & Sons, New York, 1995, pp. 3–6.



explicitly into account by allowing for subject-specific variables, as we shall show

shortly. We use the term subject generically to include microunits such individu-

als, firms or states.

2 By combining time series of cross-sectional observations, panel data gives “more

informative data, more variability, less collinearity among variables, more degrees

of freedom and more efficiency”.

3 By studying the repeated cross-sections of observations, panel data are better

suited to study the dynamics of change. Spells of unemployment, job turnover, du-

ration of unemployment, and labor mobility are better studied with panel data.

4 Panel data can better detect and measure effects that cannot be observed in pure

cross-sectional or time series data. Thus the effects of minimum wage laws on em-

ployment and earnings can be better studied if we follow successive waves of in-

creases in federal and/or state minimum wages.

5 Phenomena such as economies of scale and technological change can be better

studied by panel data than by pure cross-sectional or pure time series data.

17.2 An illustrative example: charitable giving

Table 17.1 (available on the companion website) gives data on charitable giving by 47

individuals over the period 1979–1988.3

The variables are defined as follows:

Charity: The sum of cash and other property contributions, excluding carry-overs

from previous years

Income: Adjusted gross income

Price: One minus the marginal income tax rate; marginal tax rate is defined on

income prior to contributions

Age: A dummy variable equal to 1 if the taxpayer is over 64, and 0 otherwise

MS: A dummy variable equal to 1 if the taxpayer is married, 0 otherwise

DEPS: Number of dependents claimed on the tax return

These data were obtained from the 1979–1988 Statistics of Income (SOI) Panel of Indi-

vidual Tax Returns.

One of the goals of this study was to find out the effect, if any, of the marginal tax

rate on charitable giving.

Before we proceed to the analysis, it may be noted that the panel data in this exam-

ple is called a balanced panel because the number of time observations (10) is the

same for each individual. If that were not the case, it would be an example of an unbal-

anced panel. The data here are also called a short panel. In a short panel the number

of cross-sectional or individual units N (here 47) is greater than the number of time pe-

riods, T (here 10). In a long panel, on the other hand, T is greater than N.

Suppose we want to estimate a model of charity giving in relation to the variables

listed above. Call it the charity function. How do we proceed? We have five options:
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3 These data are obtained from Edward W. Frees, Longitudinal and Panel Data Analysis and

Applications in the Social Sciences, Cambridge University Press, New York, 2004.



1 Individual time series of charity functions: We can estimate by OLS 47 time

series charity functions, one for each individual using the data for 10 years. Al-

though in principle we can estimate these functions, we will have very few degrees

of freedom to do meaningful statistical analysis. This is because we have to esti-

mate six coefficients in all, five for the five explanatory variables and one for the in-

tercept. Besides, these individual charity functions neglect the information about

the other individuals’ charity contributions because they all operate in the same

regulatory environment.

2 Cross-sectional charity functions: We can estimate by OLS 10 cross-sectional

charity functions, one for each year. There will be 47 observations per year to esti-

mate such functions. But again, we neglect the dynamic aspect of charitable

giving, for the charitable contributions made by individuals over the years will

depend on factors like income and marital status.

3 Pooled OLS charity function: We can pool all 470 observations (47 × 10) and esti-

mate a “grand” charity function, neglecting the dual nature of time series and

cross-sectional data. Not only would we be neglecting this if we were to run a

pooled model, but such a pooling assumes that the coefficients of the charity func-

tion remain constant across time and cross-section. The pooled OLS estimation is

also known as the constant coefficient model, for we are assuming that coefficients

across time and cross-section remain the same.

4 Fixed effects least-squares dummy variable (LSDV) model: As in Option 3, we

pool all 470 observations, but allow each individual to have his or her individual

intercept dummy. A variant of this is the within estimator, which we will explain

shortly.4

5 The random effects model: Instead of allowing each individual to have their

own (fixed) intercept value as in LSDV, we assume that the intercept values of

the 47 individuals are random drawings from a much larger population of indi-

viduals. As a matter of fact, the SOI Panel is a subset of the IRS Individual Tax

Model File.

We now discuss Options 3, 4 and 5 sequentially.

17.3 Pooled OLS regression of charity function

Consider the following charity function:

C B B Age B Income B Price

B Deps B MS

it i it it it

it

� � � �

� �

1 2 3 4

5 6 it itu

i t

�

� �1 2 47 1 2 10, ,.. . , ; , , . . . ,

(17.1)

where C is charitable contribution. Notice that we have put two subscripts on the vari-

ables: i, representing the cross-section unit, and t, the time. It is assumed that the
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4 Another variant is the first-difference transformation, which we will not discuss here because it has

some estimation problems if we have more than two time periods. For a brief discussion of this method, see

Gujarati/Porter, op cit., pp. 601–2.



regressors are nonstochastic, or if stochastic, are uncorrelated with the error term. It is

also assumed that the error term satisfies the usual classical assumptions.

A priori, we would expect age, income, price, and marital status to have a positive

impact on charitable giving and the number of dependents to have a negative impact.

The reason the price variable, as defined, is included in the model is that it represents

the opportunity cost of giving charitable contributions – the higher the marginal tax,

the lower the opportunity cost.

Using Eviews 6, we obtained the results of Table 17.2. Assuming that pooling of the

data is valid (a big assumption), the results show that Age, Income, and Price have sig-

nificant positive impact on charitable donation, and MS has negative but statistically

insignificant effect on charitable contributions. Surprisingly, DEPS has a positive and

significant impact on charitable giving. The low Durbin–Watson in the present in-

stance is probably more an indication of specification error than spatial or serial corre-

lation.5

The possibility that the model is misspecified stems from the fact that by lumping

together different individuals at different times, we camouflage the heterogeneity (in-

dividuality or uniqueness) that may exist among the 47 individuals. Perhaps the

uniqueness of each individual is subsumed in the composite error term, uit. As a result,

it is quite possible that the error term is correlated with some of the regressors in-

cluded in the model. If that is indeed the case, the estimated coefficients in Table 17.2

may be biased as well as inconsistent.
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Dependent Variable: CHARITY
Method: Least Squares
Sample: 1 470
Included observations: 470

Coefficient Std. Error t-Statistic Prob.

C –4.674219 1.298134 –3.600722 0.0004

AGE 1.547275 0.216955 7.131788 0.0000

INCOME 1.035779 0.128944 8.032766 0.0000

PRICE 0.483092 0.207703 2.325875 0.0205

DEPS 0.175368 0.042642 4.112556 0.0000

MS –0.008036 0.184849 –0.043476 0.9653

R-squared 0.224488 Mean dependent var 6.577150
Adjusted R-squared 0.216131 S.D. dependent var 1.313659
S.E. of regression 1.163067 Akaike info criterion 3.152681
Sum squared resid 627.6639 Schwarz criterion 3.205695
Log likelihood –734.8801 Durbin–Watson stat 0.701077
F-statistic 26.86280 Prob(F-statistic) 0.000000

Table 17.2 OLS estimation of the charity function.

5 Eviews computes the Durbin–Watson statistic by computing the first-order serial correlation on the

stacked set of residuals.



17.4 The fixed effects least squares dummy variable (LSDV)
model

One way we can take into account the heterogeneity that may exist among 47 individu-

als is to allow each individual to have his or her own intercept, as in the following

equation:

C B B Age B Income B Price

B Deps B MS

it i it it it

it

� � � �

� �

1 2 3 4

5 6 it itu

i t

�

� �1 2 47 1 2 10, ,.. . , ; , , . . . ,

(17.2)

Notice that we have added the subscript i to the intercept to indicate that the intercept

of the 47 individuals may be different. The difference may be due special features of

each individual, such as education or religion.

Equation (17.2) is known as the fixed effects regression model (FEM). The term

“fixed effects” is due to the fact that each taxpayer’s intercept, although different from

the intercepts of the other taxpayers, does not vary over time, that is, it is time-invari-

ant. If we were to write the intercept as B it1 , the intercept of each taxpayer would be

time-variant. But note that in Eq. (17.2) we assume that the slope coefficients are

time-invariant.

But how do we make Eq. (17.2) operational? This can be done easily by introducing

differential intercept dummies, which we first discussed in Chapter 3 on dummy

variables. Specifically, we modify Eq. (17.1) as follows:

C B B D B D B D B Age

B Income

it i i i it

it

� � � � � �

� �

1 2 2 3 3 46 46 47

48

�

B Price B DEPS B MS uit it it it49 50 51� � �
(17.3)

where D i2 1� for individual 2, 0 otherwise; D i3 1� for individual 3, 0 otherwise; and so

on.

It is important to note that we have used only 46 dummies to represent 47 individu-

als to avoid the dummy variable trap (perfect collinearity). In this case the 46 dum-

mies will represent the differential intercept dummy coefficients – that is, they will

show by how much the intercept coefficient of the individual that is assigned a dummy

variable will differ from the benchmark category. We are treating the first individual as

the benchmark or reference category, although any individual can be chosen for that

purpose.

The first thing to notice about the results in Table 17.3 is that the table does not pro-

duce the values of the individual differential intercept coefficients, although they are

taken into account in estimating the model. However, the differential intercept coeffi-

cients can be easily obtained (see Exercise 17.1). Secondly, if you compare the OLS

pooled regression results with the FEM results, you will see substantial differences be-

tween the two, not only in the values of the coefficients, but also in their signs.

For example, in the pooled regression the coefficient of DEPS is not only positive

(contrary to a priori expectation), but is also highly significant. The MS coefficient on

the other hand is negative, although it is not statistically significant. Why should mari-

tal status have a negative sign?

These results, therefore, cast doubt on the pooled OLS estimates. If you examine

the individual differential intercept dummies, you will find that several of them are
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statistically highly significant (see Exercise 17.1), suggesting that the pooled estimates

hide the heterogeneity among the 47 charitable donors.

We can provide a test to find out if the fixed effects model is better than the OLS

pooled model given in Table 17.2. Since the pooled model neglects the heterogeneity

effects that are explicitly taken into account in the fixed effects model, the pooled

model is a restricted version of the fixed effects model. Therefore, we can use the re-

stricted F test that we discussed in Chapter 7, which is:

F
R R m

R n k

ur r

ur

�
�

� �

( )/

( )/( )

2 2

21
(17.4)

where Rur
2 and Rr

2 are unrestricted and restricted coefficients of determination, m is

the number of parameters omitted from the restricted model (46 here), n is the

number of observations in the sample, and k is the number of parameters estimated in

the unrestricted regression (here a total of 52). The restricted and unrestricted R2

values are obtained from Tables 17.2 and 17.3, respectively.

Using the appropriate numbers from Tables 17.2 and 17.3, we obtain the following

F value:

F �
�

�
�

( . . )/

( . )/
.

07632 02245 46

1 07632 419
20 672

For 46 df in the numerator and 418 df in the denominator, this F is highly significant,

confirming that the fixed effects model is superior to the pooled regression model.

Before proceeding further, some features of the fixed effects model are worth

noting. First, the model (17.3) is known as a one-way fixed effects model, for we have

allowed the intercepts to differ among cross-sections (the 47 individuals), but not over
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Sample: 1 10
Periods included: 10
Cross-sections included: 47
Total panel (balanced) observations: 470

Coefficient Std. Error t-Statistic Prob.

C –2.089970 1.131118 –1.847704 0.0654

AGE 0.102249 0.208039 0.491490 0.6233

INCOME 0.838810 0.111267 7.538725 0.0000

PRICE 0.366080 0.124294 2.945265 0.0034

DEPS –0.086352 0.053483 –1.614589 0.1072

MS 0.199833 0.263890 0.757257 0.4493

Effects Specification
Cross-section fixed (dummy variables)
R-squared 0.763177 Mean dependent var 6.577150
Adjusted R-squared 0.734282 S.D. dependent var 1.313659
S.E. of regression 0.677163 Akaike info criterion 2.162215
Sum squared resid 191.6735 Schwarz criterion 2.621666
Log likelihood –456.1204 Hannan–Quinn criter. 2.342975
F-statistic 26.41239 Durbin–Watson stat 1.234015
Prob(F-statistic) 0.000000

Table 17.3 OLS charity regression with individual dummy coefficients.



time. We can introduce nine time dummies to represent 10 years (again to avoid the

dummy variable trap) along with the 46 cross-section dummies. In that case the model

that emerges is called a two-way fixed effects model.

Of course, if we add these time dummies, in all we have to estimate 46 cross-section

dummies, nine time dummies, the common intercept and five slope coefficients of the

five regressors: in all, a total of 61 coefficients. Although we have 470 observations, we

will lose 61 degrees of freedom.

We have assumed that the slope coefficients of the charity function remain the

same. But it is quite possible that these slope coefficients may be different for all 47 in-

dividuals. To allow for this possibility, we can introduce differential slope coeffi-

cients, multiplying the five slope coefficients by 46 differential intercept dummies,

which will consume another 230 degrees of freedom. Nothing prevents us from inter-

acting the 10 time dummies with the five explanatory variables, which will consume

another 50 degrees of freedom. Ultimately, we will be left with very few degrees of free-

dom to do meaningful statistical analysis.

17.5 Limitations of the fixed effects LSDV model

Although easy to implement, the LSDV model has the following limitations:

1 Every additional dummy variable will cost an additional degree of freedom. There-

fore, if the sample is not very large, introducing too many dummies will leave few

observations to do meaningful statistical analysis.

2 Too many additive and multiplicative dummies may lead to the possibility of

multicollinearity, which make precise estimation of one or more parameters

difficult.

3 To obtain estimates with desirable statistical properties, we need to pay careful at-

tention to the error term uit. The statistical results presented in Tables 17.2 and

17.3 are based on the assumption that the error term follows the classical assump-

tions, namely u Nit ~ ( , )0 2
 . Since the index i refers to cross-sectional observation

and t to time series observations, the classical assumption regarding uit may have

to be modified. There are several possibilities:

(a) We can assume that the error variance is the same for all cross-sectional units

or we can assume that the error variance is heteroscedastic.6

(b) For each subject, we can assume that there is no autocorrelation over time or

we can assume autocorrelation of the AR (1) type.

(c) At any given time, we can allow the error term of individual #1 to be noncor-

related with the error term for say, individual #2, or we can assume that there

is such correlation.7

Some of the problems associate with LSDV can be alleviated if we consider the al-

ternative that we discuss below.
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6 Stata provides heteroscedasticity-corrected standard errors for the panel data regression models.

7 This can be accomplished by the so-called seemingly unrelated regression (SURE) model. This model

was originally developed by Arnold Zellner, An efficient method of estimating seemingly unrelated

regressions and tests for aggregation bias, Journal of the American Statistical Association, vol. 57, 1962, pp.

348–68.



17.6 The fixed effect within group (WG) estimator

Since the LSDV model may involve estimating several coefficients, one way to elimi-

nate the fixed effect in B i1 in Eq. (17.2) is to express both the regressand and the

regressors in this equation as deviations from their respective (group) mean values and

run the regression on the mean-corrected variables. To see what this does, start with

Eq. (17.2):

C B B Age B Income B Price B Deps B MSit i it it it it� � � � � �1 2 3 4 5 6 it itu�

Summing this equation on both sides and dividing by T (= 10) we obtain:

1
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Since the parameters do not change over time, this reduces to
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where a bar over a variable represents its average value over 10 years. For our example,

we will have 47 averaged values of each variable, each average value taken over a period

of 10 years.

Subtracting (17.5) from (17.2), we obtain:
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See how the fixed or individual effect intercept term B1i drops out.

As you can see from Eq. (17.6), we are essentially running mean-corrected

regressands on mean-corrected regressors. Since the average value of the mean-cor-

rected variables is zero, there is no intercept term in Eq. (17.6).

The OLS estimators obtained from Eq. (17.6) are known as within group (WG) es-

timators, because they use the (time) variation within each cross-sectional unit. Com-

pared to the pooled estimators given in Table 17.2, the WG estimators provide

consistent estimators of the slope coefficients, although they are not efficient (i.e. they

have larger variances).8

Interestingly, the estimators obtained from the LSDV method and the within group

method are identical, because mathematically the two models are identical. This can

be seen in following Table 17.4 (the results are obtained from Stata 10).

Although more economical than the LSDV model, one drawback of the WG esti-

mator is that in removing the fixed, or individual, effects (i.e. B1i), it also removes the

296 Topics in time series econometrics

8 This is because when we express variables as deviations from their mean values, the variation in the

mean-corrected values will be much smaller than the variation in the original values of the variables. In that

situation the variation of the disturbance term uit may be relatively large, thus leading to higher standard

errors of the estimated coefficients.



effect of time-invariant regressors that may be present in the model. For example, in a

panel data regression of wages on work experience, age, gender, education, race, and

so on, the effect of gender and race will be wiped out in the mean-corrected values of

the regressors, for gender and race will not vary for an individual over time. So we will

not be able to assess the impact such time-invariant variables on wages.

Before moving on, we present the robust standard errors of FEM (Table 17.5), using

White’s procedure, which we have discussed in earlier chapters.
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R-squared = 0.1350
Adj R-squared = 0.1257

chard Coef. Std. Err. t P>|t|

aged .1022493 .197458 0.52 0.605

incd .8388101 .1056075 7.94 0.000

prid .3660802 .1179726 3.10 0.002

depd –.0863524 .0507623 –1.70 0.090

msd .1998327 .250468 0.80 0.425

cons 3.15e-09 .0296465 0.00 1.000

Table 17.4 Within group estimators of the charity function.

Note: The standard errors shown in this table are slightly different from those shown in
Table 17.3.9 Note also the value of the constant term is practically zero, as it should be.

Method: Panel Least Squares
Periods included: 10
Cross-sections included: 47
Total panel (balanced) observations: 470
White period standard errors & covariance (d.f. corrected)

Coefficient Std. Error t-Statistic Prob.

C –2.089970 1.710019 –1.222191 0.2223

AGE 0.102249 0.113897 0.897738 0.3698

INCOME 0.838810 0.145653 5.758977 0.0000

PRICE 0.366080 0.146602 2.497102 0.0129

DEPS –0.086352 0.069186 –1.248111 0.2127

MS 0.199833 0.712740 0.280373 0.7793

Effects Specification
Cross-section fixed (dummy variables)
R-squared 0.763177 Mean dependent var 6.577150
Adjusted R-squared 0.734282 S.D. dependent var 1.313659
S.E. of regression 0.677163 Akaike info criterion 2.162215
Sum squared resid 191.6735 Schwarz criterion 2.621666
Log likelihood –456.1204 Durbin–Watson stat 1.234015
F-statistic 26.41239 Prob(F-statistic) 0.000000

Table 17.5 Fixed effects model with robust standard errors.

9 The reason for this is that the estimate of the usual error variance � / ( )
2 2� �RSS NT has to be

adjusted as � / ( )
2 2� � �RSS NT N because we have to estimate N means in computing group averages.

However, the standard statistical packages take this into account.



If you compare these results with those given in Table 17.3 you will find that the

standard errors were substantially underestimated in Table 17.3.

17.7 The random effects model (REM) or error components
model (ECM)

In the fixed effects model it is assumed that the individual specific coefficient B1i is

fixed for each subject, that is, it is time-invariant. In the random effects model it is as-

sumed that B1i is a random variable with a mean value of B1 (no i subscript here) and

the intercept of any cross-section unit is expressed as:

B Bi i1 1� � . (17.7)

where .i is a random error term with mean 0 and variance 
.
2 .

In terms of our illustrative example, this means that the 47 individuals included in

our sample are a drawing from a much larger universe of such individuals and that

they have a common mean value for the intercept (= B1). Differences in the individual

values of the intercept for each individual donor to charity are reflected in the error

term .i . Therefore, we can write the charity function (17.1) as:

C B B Age B Income B Price B Deps

B MS

it it it it it
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where

w uit i it� �. (17.9)

The composite error term wit has two components: .i , which is the cross-section or

individual-specific error component and uit , which is the combined time series and

cross-section error component.10

Now you can see why the REM model is also called an error components model

(ECM): the composite error term consists of two (or more) error components.11

The usual assumptions of ECM are that

. 
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That is, individual error components are not correlated with each other and are not

autocorrelated across both cross-section and time series units. It is also critical to note

that wit is not correlated with any of the explanatory variables included in the model.

Since .i is a part of wit , it is possible that the latter is correlated with one or more

regressors. If that turns out to be the case, the REM will result in inconsistent estima-

tion of the regression coefficients. The Hausman test, which will be explained shortly,
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10 uit is sometimes called the idiosyncratic term because it varies over cross-section (i.e. individual) as

well as time.

11 If we introduce time dummies, there will be time-specific error components (see Exercise 17.2).



will show in a given application if wit is correlated with the regressors – that is,

whether REM is the appropriate model.

As a result of the assumptions in Eq. (17.10), it follows that

E(wit) = 0 (17.11)

var( )wit u� �
 
.
2 2 (17.12)

Now if 
.
2 0� , there no difference between Eq. (17.1) and Eq. (17.8), in which case

we can simply pool all the observations and run the pooled regression, as in Table 17.2.

This is so because in this situation there are either no subject-specific effects or they

have all been accounted for by the explanatory variables.

Although Eq. (17.12) shows that the composite error term is homoscedastic, it can

be shown that wit and w t sis ( )� are correlated – that is, the error terms of a given

cross-sectional unit at two different times are correlated. The correlation coefficient

between the two can be shown as:

�
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Two points about this correlation should be noted. First, for any cross-sectional

unit � remains the same no matter how far apart the two time periods are; and sec-

ondly, � remains the same for all cross-sectional units.

If we do not take into account�, the OLS estimators of random effects model are in-

efficient. Therefore we will have to use the method of generalized least squares (GLS)

to obtain efficient estimates. Software packages like Stata can compute robust or

panel-corrected standard errors.

Before we present the REM results for the charity example, it may be pointed out

that in contrast to the fixed effects model (dummy variable, within or first-difference

version), in REM we can include time-invariant variables, such as gender, geographic

location or religion. They do not get washed out as in the FEM model.

Returning to our illustrative example, we obtain the REM of Table 17.6.

As in the FEM, the estimated coefficients have the expected signs, although DEPS

and MS are individually statistically insignificant. From the effects specification box,

we see that 
u
2 20 9309 08665� �( . ) . and 
.

2 20 6771 0 4584� �( . ) . . Then from Eq. (17.13),

we obtain � � �0 4584 13893 03299. / . . , which gives the extent of correlation of a

cross-sectional unit at two different time periods, and this correlation stays the same

across all cross-sectional units. This � value differs slightly from the one shown in

Table 17.6 due to rounding error.

17.8 Fixed effects model vs. random effects model

Comparing the fixed effect estimators given in Table 17.3 and the random effects esti-

mators given in Table 17.6, you will see substantial differences between the two. So

which model is better in the present example: fixed effects or random effects?

The answer to this question depends on the assumption we make about the likely

correlation between the cross-section specific error component .i and the X

regressors. If it assumed that .i and the regressors are uncorrelated, REM may be ap-

propriate, but if they are correlated, FEM may be appropriate. In the former case we
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also have to estimate fewer parameters. So how do we decide in a given situation which

is the appropriate model?

A test devised by Hausman, which is incorporated in packages such as Stata and

Eviews, can be used to answer this question. The null hypothesis underlying the

Hausman test is that FEM and REM do not differ substantially. His test statistic has an

asymptotic (i.e. large sample) �2 distribution with df equal to number of regressors in

the model. As usual, if the computed chi-square value exceeds the critical chi-square

value for given df and the level of significance, we conclude that REM is not appropri-

ate because the random error terms .i are probably correlated with one or more

regressors. In this case, FEM is preferred to REM.

For our example, the results of the Hausman test are given in Table 17.7. The

Hausman test strongly rejects the REM, for the p value of the estimated chi-square sta-

tistics is very low. The last part of this table compares the fixed effects and random ef-

fects coefficient of each variable. As the last probability column of the table shows, the

differences in the Age and DEPS coefficients are statistically highly significant.
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Dependent Variable: CHARITY
Method: Panel EGLS (Cross-section random effects)
Sample: 1 10
Periods included: 10
Cross-sections included: 47
Total panel (balanced) observations: 470
Swamy and Arora estimator of component variances
White period standard errors & covariance (d.f. corrected)

Coefficient Std. Error t-Statistic Prob.

C –2.370567 1.386444 –1.709817 0.0880

AGE 0.277063 0.127176 2.178577 0.0299

INCOME 0.852996 0.126574 6.739099 0.0000

PRICE 0.370199 0.140054 2.643253 0.0085

DEPS –0.036254 0.064181 –0.564874 0.5724

MS 0.199669 0.472666 0.422432 0.6729

Effects Specification

S.D. Rho

Cross-section random 0.930938 0.6540

Idiosyncratic random 0.677163 0.3460

Weighted Statistics
R-squared 0.132701 Mean dependent var 1.474396
Adjusted R-squared 0.123355 S.D. dependent var 0.731733
S.E. of regression 0.685116 Sum squared resid 217.7944
F-statistic 14.19881 Durbin–Watson stat 1.094039
Prob(F-statistic) 0.000000

Unweighted Statistics
R-squared 0.136789 Mean dependent var 6.577150
Sum squared resid 698.6427 Durbin–Watson stat 0.341055

Table 17.6 Random effects model of the charity function with white standard

errors.



Basically, the Hausman test examines ( )b bRE FE� 2 – that is, the squared difference be-

tween regression coefficients estimated from REM and FEM.

Since the REM model does not seem appropriate in the present example, we can

revert to the FEM model. Another alternative is to continue with REM but use instru-

mental variables (IV) for the individual effect that may be correlated with other

regressors in the model. But the use of instrumental variables with panel data is a com-

plicated subject and we will not pursue it in this book, although we will discuss the IV

method in some detail in Chapter 19. However, it may be noted that the

Hausman–Taylor estimator and the Arellano–Bond estimator use the instrumental

variables to estimate REM models. For a somewhat accessible discussion of these esti-

mators, see the references.12

Some guidelines about REM and FEM

Here are some general guidelines about which of the two models may be suitable in

practical applications:13

1 If T (the number of time observations) is large and N (the number of cross-section

units) is small, there is likely to be little difference in the values of the parameters

estimated by FEM and REM. The choice then depends on computational conve-

nience, which may favor FEM.

2 In a short panel (N large and T small), the estimates obtained from the two models

can differ substantially. Remember that in REM B Bi i1 1� � . , where .i is the

cross-sectional random component, whereas in FEM B i1 is treated as fixed. In the

latter case, statistical inference is conditional on the observed cross-sectional

units in the sample. This is valid if we strongly believe that the cross-sectional
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Correlated Random Effects – Hausman Test
Equation: Untitled
Test cross-section random effects

Test Summary Chi-Sq.
Statistic

Chi-Sq. d.f. Prob.

Cross-section random 15.964273 5 0.0069

Cross-section random effects test comparisons:

Variable Fixed Random Var(Diff.) Prob.

AGE 0.102249 0.277063 0.003539 0.0033

INCOME 0.838810 0.852996 0.000830 0.6224

PRICE 0.366080 0.370199 0.000087 0.6595

DEPS –0.086352 –0.036254 0.000487 0.0232

MS 0.199833 0.199669 0.016167 0.9990

Table 17.7 Results of the Hausman test.

12 See Gary Koop, Introduction to Econometrics, John Wiley & Sons, Chichester, England, 2008, pp.

267–8. For an advanced discussion, see Cameron/Trivedi op cit., pp. 765–6.

13 See G. G. Judge, R. C. Hill, W. E. Griffiths, H. Lutkepohl and T. C. Lee, Introduction to the Theory and

Practice of Econometrics, 2nd edn, John Wiley & Sons, New York, 1985, pp. 489–91.



units in the sample are not random drawings from a larger population. In that

case, FEM is appropriate. If that is not the case, then REM is appropriate because

in that case statistical inference is unconditional.

3 If N is large and T is small, and if the assumptions underlying REM hold, REM esti-

mators are more efficient than FEM.

4 Unlike FEM, REM can estimate coefficients of time-invariant variables, such as

gender and ethnicity. The FEM does control for such time-invariant variables, but

it cannot estimate them directly, as is clear from the LSDV or WG estimator

models. On the other hand, FEM controls for all time-invariant variables, whereas

REM can estimate only those time-invariant variables that are explicitly intro-

duced in the model.

17.9 Properties of various estimators14

In this chapter we have discussed several methods of estimating (linear) panel regres-

sion models, such as pooled estimators, fixed effects estimators (both LSDV and

within-group estimator), and random effects. What are their statistical properties? We

will concentrate on the consistency property, since panel data usually involve a large

number of observations.

Pooled estimators: If the slope coefficients are constant across subjects, and if the

error term in Eq. (17.1) is uncorrelated with the regressors, pooled estimators are con-

sistent. However, it is very likely that the error terms are correlated over time for a

given subject. Therefore, we must use panel-corrected standard errors for hypothesis

testing. Otherwise, the routinely computed standard errors may be underestimated.

It may added that if the fixed effects model is appropriate, but we use the pooled

model, the estimated coefficients will be inconsistent, as we saw in our charity

example.

Fixed effects estimators: Even if the underlying model is pooled or random-effects,

the fixed effects estimators are always consistent.

Random effects estimators: The random effects model is consistent even if the true

model is pooled. But if the true model is fixed effects, the random effects estimators are

inconsistent.

17.10 Panel data regressions: some concluding comments

As noted at the outset, the topic of panel data modeling is vast and complex. We have

barely scratched the surface. Among the topics that we have not discussed at any

length, the following may be mentioned.

1 Hypothesis testing with panel data.

2 Heteroscedasticity and autocorrelation in ECM.

3 Unbalanced panel data.

4 Dynamic panel data models inwhich thelagged value(s) of the regressand appears

as an explanatory variable.
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5 Simultaneous equations involving panel data.

6 Qualitative dependent variables and panel data.

7 Unit roots in panel data (on unit roots, see Chapter 13).

One or more of these topics can be found in the references cited in this chapter,

and the reader is urged to consult them to learn more about this topic. These refer-

ences also cite several empirical studies in various areas of business and economics

that have used panel data regression models. The beginner is well advised to read

some of these applications to get a feel for how researchers have actually imple-

mented such models.15

17.11 Summary and conclusions

Panel data regression models are based on panel data, which are observations on the

same cross-sectional, or individual, units over several time periods.

Panel data have several advantages over purely cross-sectional or purely time series

data. These include: (a) increase in the sample size, (b) study of dynamic changes in

cross-sectional units over time, and (c) study of more complicated behavioral models,

including study of time-invariant variables.

However, panel models pose several estimation and inference problems, such as

heteroscedasticity, autocorrelation, and cross-correlation in cross-sectional units at

the same point in time.

The two prominently used methods to deal with one or more of these problems are

the fixed effects model (FEM) and the random effects model (REM), also know as the

error components model (ECM).

In FEM, the intercept in the regression model is allowed to differ among individuals

to reflect the unique feature of individual units. This is done by using dummy vari-

ables, provided we take care of the dummy variable trap. The FEM using dummy vari-

ables is known as the least squares dummy variable model (LSDV). FEM is appropriate

in situations where the individual-specific intercept may be correlated with one or

more regressors. A disadvantage of the LSDV is that it consumes a lot of degrees of

freedom when N (the number of cross-sectional units) is very large.

An alternative to LSDV is to use the within-group (WG) estimator. Here we sub-

tract the (group) mean values of the regressand and regressor from their individual

values and run the regression on the mean-corrected variables. Although it is econom-

ical in terms of the degrees of freedom, the mean-corrected variables wipe out time-in-

variant variables (such as gender and race) from the model.

An alternative to FEM is REM. In REM we assume that the intercept value of an in-

dividual unit is a random drawing from a much larger population with a constant

mean. The individual intercept is then expressed as a deviation from the constant

mean value. REM is more economical than FEM in terms of the number of parameters

estimated. REM is appropriate in situations where the (random) intercept of each

cross-sectional unit is uncorrelated with the regressors. Another advantage of REM is

that we can introduce time-invariant regressors. This is not possible in FEM because

all such variables are collinear with the subject-specific intercept.
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Longitudinal Data, Using SAS. SAS Institute, Cary, North Carolina, 2005.



The Hausman test can be used to decide between FEM and ECM.

Some specific problems with panel data model need to be kept in mind. The most

serious problem is the problem of attrition, whereby for one reason or another, mem-

bers of the panel drop out over time so that in the subsequent surveys (i.e. cross-sec-

tions) fewer original subjects remain in the panel. Also, over time subjects may refuse

or be unwilling to answer some questions.

Exercises

17.1 Table 17.8 gives the LSDV estimates of the charity example. If you examine the

raw data given in Table 17.1, can you spot some pattern regarding individuals that

have significant intercepts? For example, are married taxpayers likely to contribute

more than single taxpayers?
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Dependent Variable: CHARITY
Method: Least Squares
Date: 03/26/10 Time: 20:11
Sample: 1 470
Included observations: 470

Coefficient Std. Error t-Statistic Prob.

AGE 0.102249 0.208039 0.491490 0.6233

INCOME 0.838810 0.111267 7.538725 0.0000

PRICE 0.366080 0.124294 2.945265 0.0034

DEPS –0.086352 0.053483 –1.614589 0.1072

MS 0.199833 0.263890 0.757257 0.4493

SUBJECT=1 –3.117892 1.139684 –2.735752 0.0065

SUBJECT=2 –1.050448 1.148329 –0.914762 0.3608

SUBJECT=3 –1.850682 1.175580 –1.574272 0.1162

SUBJECT=4 –1.236490 1.146758 –1.078248 0.2815

SUBJECT=5 –1.437895 1.157017 –1.242761 0.2147

SUBJECT=6 –2.361517 1.176887 –2.006580 0.0454

SUBJECT=7 –4.285028 1.153985 –3.713244 0.0002

SUBJECT=8 –1.609123 1.120802 –1.435689 0.1518

SUBJECT=9 –0.027387 1.242987 –0.022033 0.9824

SUBJECT=10 –1.635314 1.086465 –1.505170 0.1330

SUBJECT=11 –2.262786 1.159433 –1.951632 0.0516

SUBJECT=12 –1.042393 1.189056 –0.876656 0.3812

SUBJECT=13 –2.382995 1.100684 –2.165013 0.0310

SUBJECT=14 –2.231704 1.201993 –1.856669 0.0641

SUBJECT=15 –0.776181 1.113080 –0.697328 0.4860

SUBJECT=16 –4.015718 1.178395 –3.407788 0.0007

SUBJECT=17 –1.529687 1.172385 –1.304765 0.1927

SUBJECT=18 –1.921740 1.178960 –1.630029 0.1038

SUBJECT=19 –1.643515 1.207427 –1.361170 0.1742

SUBJECT=20 0.304418 1.159808 0.262473 0.7931

Table 17.8 Panel estimation of charitable giving with subject-specific dummies.



17.2 Expand the LSDV model by including the time dummies and comment on the

results.

17.3 From the website of the Frees book cited earlier, obtain panel data of your liking

and estimate the model using the various panel estimation techniques discussed in

this chapter.
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Coefficient Std. Error t-Statistic Prob.

SUBJECT=21 –2.990338 1.101186 –2.715562 0.0069

SUBJECT=22 –2.719506 1.161885 –2.340599 0.0197

SUBJECT=23 –2.261796 1.144438 –1.976338 0.0488

SUBJECT=24 –1.843015 1.163838 –1.583568 0.1140

SUBJECT=25 –1.665241 1.166410 –1.427664 0.1541

SUBJECT=26 –3.446773 1.139505 –3.024799 0.0026

SUBJECT=27 –2.252749 1.172809 –1.920816 0.0554

SUBJECT=28 –1.832946 1.227824 –1.492841 0.1362

SUBJECT=29 –2.925355 1.095088 –2.671344 0.0078

SUBJECT=30 –1.428511 1.140020 –1.253058 0.2109

SUBJECT=31 –1.740051 1.133678 –1.534872 0.1256

SUBJECT=32 –0.900668 1.107655 –0.813130 0.4166

SUBJECT=33 –2.058213 1.157546 –1.778083 0.0761

SUBJECT=34 –1.060122 1.114322 –0.951360 0.3420

SUBJECT=35 –2.866338 1.146888 –2.499232 0.0128

SUBJECT=36 –0.986984 1.174292 –0.840493 0.4011

SUBJECT=37 –1.394347 1.188862 –1.172841 0.2415

SUBJECT=38 –5.404498 1.132293 –4.773054 0.0000

SUBJECT=39 –3.190405 1.140833 –2.796558 0.0054

SUBJECT=40 –2.838580 1.179427 –2.406745 0.0165

SUBJECT=41 –2.398767 1.180879 –2.031340 0.0429

SUBJECT=42 –2.068558 1.085109 –1.906314 0.0573

SUBJECT=43 –2.434273 1.152611 –2.111964 0.0353

SUBJECT=44 –2.530733 1.189329 –2.127867 0.0339

SUBJECT=45 –0.481507 1.200597 –0.401056 0.6886

SUBJECT=46 –3.304275 1.132833 –2.916826 0.0037

SUBJECT=47 –3.089969 1.221833 –2.528962 0.0118

R-squared 0.763177 Mean dependent var 6.577150
Adjusted R-squared 0.734282 S.D. dependent var 1.313659
S.E. of regression 0.677163 Akaike info criterion 2.162215
Sum squared resid 191.6735 Schwarz criterion 2.621666
Log likelihood –456.1204 Durbin–Watson stat 1.430014

Table 17.8 (continued)



18
Survival analysis

In this chapter we discuss a statistical technique that goes by various names, such as

duration analysis (e.g. the length of time a person is unemployed or the length of an

industrial strike), event history analysis (e.g. a longitudinal record of events in a per-

son’s life, such as marriage), reliability or failure time analysis (e.g. how long a light

bulb lasts before it burns out), transition analysis (from one qualitative state to an-

other, such as from marriage to divorce), hazard rate analysis (e.g. the conditional

probability of event occurrence), or survival analysis (e.g. time until death from breast

cancer). For brevity of exposition, we will christen all these terms by the generic name

of survival analysis (SA).

The primary goals of survival analysis are: (1) to estimate and interpret survivor or

hazard functions (to be discussed shortly) from survival data and (2) to assess the

impact of explanatory variables on survival time.

The topic of survival analysis is vast and mathematically complex. In this chapter

our objective is to provide an exposure to this subject and illustrate it. For further

study of this subject, readers are advised to consult the references.1

18.1 An illustrative example: modeling recidivism duration

To set the stage, we consider a concrete example. This example relates to a random

sample of 1,445 convicts released from prison between July 1977 and June 1978 and

the time (duration) until they return to prison.2 The data were obtained retrospec-

tively by examining records in April 1984. Because of different starting times, the cen-

soring times vary from 70 to 81 months.

The variables used in the analysis are defined as follows:

Black = 1 if black

Alcohol = 1 if alcohol problems
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1 See D. Hosmer and S. Lemeshow, Applied Survival Analysis, John Wiley & Sons, New York, 1999;

David G. Kleinbaum, Survival Analysis: A Self-Learning Text, Springer-Verlag, New York, 1996; Daniel A.

Powers and Yu Xie, Statistical Methods for Categorical Data Analysis, 2nd edn, Emerald Group Publishing,

UK, 2008, Chapter 6; M. Cleves, W. M. Gould and R. G. Gutierrez, An Introduction to Survival Analysis

using Stata, Stata Press, College Station, Texas, 2002; Jeffrey Wooldridge, Econometric Analysis of Cross

Section and Panel Data, MIT Press, MA, 2002, Chapter 20.

2 The data come from C. F. Chung, P. Schmidt and A. D. Witte, Survival analysis: a survey, Journal of

Quantitative Criminology, vol. 7, 1991, pp. 59–98, and are reproduced from Wooldridge, op cit.; they can be

downloaded from http://www.stata.com/data/jwooldridge/eacsap/recid.dta.



Drugs = 1 if drug history

Super = 1 if release supervised

Married = 1 if married when incarcerated

Felon = 1 if felony sentence

Workprg =1 if in prison work program

Property = 1 if property crime

Person = 1 if crime against person

Priors = number of prior convictions

Educ = years of schooling

Rules = number of rules violations in prison

Age = in months

Tserved = time served, rounded to months

Follow = length of follow period, months

Durat = maximum time until rearrest

Cens = 1 if duration right censored

The variable of interest in this study is Durat, the maximum time until a released

convict commits a crime and returns to prison. We want to find out how Durat is re-

lated to the regressors, also called covariates, listed above, although we may not in-

clude all these variables in the analysis because of collinearity among some variables.

See Table 18.1 on the companion website.

Before we answer this question, it is essential that we know some of the terminology

used in survival analysis.

18.2 Terminology of survival analysis

Event: “An event consists of some qualitative change that occurs at a specific point

in time.... The change must consist of a relatively sharp disjunction between what

precedes and what follows.”3 An obvious example is death. Less obvious, but none-

theless important, events are job changes, promotions, layoffs, retirement, convic-

tions and incarcerations, admission into a nursing home or hospice facilities, and so

on.

Duration spell: It is the length of time before an event occurs, such as the time

when an unemployed person is re-employed, or the length of time after divorce a

person gets re-married, or the length of time between successive children, or the

length of time before a released prisoner is rearrested.

Discrete time analysis: Some events occur only at discrete times. For example,

presidential elections in the USA take place every four years and the Census of Pop-

ulation is conducted every 10 years. The unemployment rate in the USA is pub-

lished once a month. There are specialized techniques to handle such discrete

events, such as discrete-time event history.
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Paper, Sage Publications, California, 1984, p. 9.



Continuous time analysis: In contrast to discrete time analysis, continuous time

SA analysis treats time as continuous. This is often done for mathematical and sta-

tistical convenience, for very few events are observed along a time continuum. In

some cases events can be observed in a small window of time, such as the weekly un-

employment benefit claims. The statistical techniques used to handle continuous

time SA are different from those used to handle discrete time SA. However, there

are no hard and fast rules about which approach may be appropriate in a given

situation.

The cumulative distribution function (CDF) of time: Suppose a person is hospi-

talized and let T denote the time (measured in days or weeks) until he or she is dis-

charged from the hospital. If we treat T as a continuous variable, the distribution of

the T is given by the CDF,

F t T t( ) Pr( )� � (18.1)

which gives the probability that the event (discharge from hospital) has occurred by

duration t. If F(t) is differentiable, its density function can be expressed as

f t
F t
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( )� � *

d

d
(18.2)

The survivor function S(t): The probability of surviving past time t, defined as:

S t F t T t( ) ( ) Pr( )� � � �1 (18.3)

The hazard function: Consider the following function:

h t
Pr t T t h T t
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where the expression in the numerator of this function is the conditional probabil-

ity of leaving the initial state (e.g. hospital stay) in the (time) interval {t, t + h}, given

survival up to time t. Equation (18.4) is known as the hazard function. It gives the in-

stantaneous rate of leaving the initial state per unit of time.

Now by the definition of conditional probability,
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Since
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we can write
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1
(18.7)

In simple words, the hazard function is the ratio of the density function to the survi-

vor function for a random variable . Simply stated, it gives the probability that
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someone fails at time t, given that they have survived up to that point, failure to be

understood in the given context. Incidentally, note that Eq. (18.7) is also known as

the hazard rate function, and we will use the terms “hazard function” and “hazard

rate function” interchangeably.

Equation (18.7) is an important relationship, because regardless of the functional

form we choose for the hazard function, h(t), we can derive the CDF, F(t), from it.

Now the question is: how do we choose f(t) and S(t) in practice? We will answer this

question in the next section. In the mean time, we need to consider some special prob-

lems associated with SA.

1 Censoring: A frequently encountered problem in SA is that the data are often cen-

sored. Suppose we follow 100 unemployed people at time t and follow them until

time period (t + h). Depending on the value we choose for h, there is no guarantee

that all 100 people will still be unemployed at time (t + h); some of them will have

been re-employed and some dropped out of the labor force. Therefore, we will

have a censored sample.

Our sample may be right-censored because we stop following our sample of the

unemployed at time t + h. Our sample can also be left-censored, because we do

not know how many of the 100 unemployed were in that status before time t. In es-

timating the hazard function we have to take into account this censoring problem.

Recall that we encountered a similar problem when we discussed the censored and

truncated sample regression models.

2 Hazard function with or without covariates (or regressors): In SA our interest is

not only in estimating the hazard function but also in trying to find out if it de-

pends on some explanatory variables or covariates. The covariates for our illustra-

tive example are as given in Section 18.1.

But if we introduce covariates, we have to determine if they are time-variant or

time-invariant. Gender and religion are time-invariant regressors, but education,

job experience, and so on, are time-variant. This complicates SA analysis.

3 Duration dependence: If the hazard function is not constant, there is duration de-

pendence. If d dh t t( )/ � 0, there is positive duration dependence. In this case the

probability of exiting the initial state increases the longer is a person in the initial

state. For example, the longer a person is unemployed, his or her probability of ex-

iting the unemployment status increases in the case of positive duration depend-

ence. The opposite is the case if there is negative dependency; in this case,

d dh t t( )/ � 0.

4 Unobserved heterogeneity: No matter how many covariates we consider, there

may be intrinsic heterogeneity among individuals and we may have to account for

this. Recall that we had a similar situation in the panel data regression models

where we accounted for unobserved heterogeneity by including individual-spe-

cific (intercept) dummies, as in the fixed effects models.

With these preliminaries, let us show how survival analysis can be conducted.
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18.3 Modeling recidivism duration

There are three basic approaches to analyzing survival data: nonparametric, para-

metric, and partially parametric, also known as semi-parametric.4 In the non-

parametric approach we do not make any assumption about the probability

distribution of survival time, whereas in the parametric approach we assume some

probability distribution.

The nonparametric approach is used in the analysis of life tables, which have been

used for over 100 years to describe human mortality experience. Actuaries and de-

mographers are obviously interested in life tables, but we will not pursue this topic in

this chapter.5 The parametric approach is largely used for continuous time data.

There are several parametric models that are used in duration analysis. Each de-

pends on the assumed probability distribution, such as the exponential, Weibull,

lognormal, and loglogistic. Since the (probability) density function of each of these

distributions is known, we can easily derive the corresponding hazard and survival

functions. We now consider some of these distributions and apply them to our illus-

trative example. In each of the distributions discussed below we assume that h, the

hazard rate, can be explained by one or more covariates.

But before we consider these models, why not use the traditional normal linear re-

gression model, regressing Durat on the explanatory variables listed earlier? The

reason why the traditional regression methodology may not be applicable in survival

analysis is that, “...the distributions for time to event might be dissimilar from the

normal – they are almost certainly non-symmetric, they might be bimodal, and linear

regression is not robust to these violations”6 (but see Exercise 18.1).

18.4 Exponential probability distribution

Suppose the hazard rate h t( ) is constant and is equal to h. For our example, this would

mean that the probability of recidivism does not depend on the duration (time) in the

initial state. A constant hazard implies the following CDF and PDF:

F t ht( ) � � �1 e (18.8)

f t F t h ht( ) ( )� * � �e (18.9)

Since
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which gives the survival function. Then from Eq. (18.7), it follows that
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4 As Mittelhammer et al., note, “A semiparametric model is a model whose DSP[data sampling process]

is defined in terms of two components; one is fully determined once the values of a finite number of

parameters are known (this is the parametric component), whereas the other is not amenable to being fully

defined by the values of any finite collection of parameters (the nonparametric component)”. See Ron C.

Mittelhammer, George G. Judge and Douglas J. Miller, Econometric Foundations, Cambridge University

Press, New York, 2000, p. 15.

5 For a brief description of life table analysis, see Hosmer and Lemeshow, op cit., pp. 36–9.

6 See Cleves et al., op cit., p. 2.
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That is, the hazard rate function is a constant, equal to h (no time subscript here). This

is the memoryless property of the exponential distribution.

Now we can incorporate regressors or covariates into duration models to see how

they affect the hazard function. Using several regressors listed earlier, we obtain the

results of Table 18.2 based on Stata (version 10); the estimation of the exponential dis-

tribution function is done by ML methods.7

Interpretation of results

Before we interpret the results, it is very important to note that the coefficients pre-

sented in Table 18.1 are hazard or relative risk ratios.

This ratio is expressed as eregression coefficient, that is, as an exponential of a regres-

sion coefficient in the fitted model.

The table gives the hazard ratio for each covariate, its standard error, and the Z

value, or the Wald statistic, which is the ratio of the estimated coefficient divided by its

standard error. This Z value follows an asymptotic standard normal distribution and is

used to test the null hypothesis that the true (or population) hazard ratio coefficient is

zero.

Based on the Z statistic, it can be seen that the variables black, alcohol, drugs, felon,

property, priors, age, and time served are individually statistically highly significant.

The likelihood ratio (LR) statistic of 185 is also highly significant, suggesting that the

overall fit of the model is quite good. Recall that in the nonlinear model the equivalent

of R2 is given by the LR ratio.

The interpretation of hazard ratios is as follows:
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Exponential regression — log relative-hazard form
No. of subjects = 1445 Number of obs = 1445
No. of failures = 552
Time at risk = 80013

LR chi2 (8) = 185.13
Log likelihood = -1647.3304 Prob > chi2 = 0.0000

_ Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

black 1.627119 .1433317 5.53 0.000 1.369107 1.933753

alcohol 1.590821 .1671353 4.42 0.000 1.294769 1.954567

drugs 1.375137 .1345931 3.25 0.001 1.135099 1.665936

felon .5477735 .0791362 –4.17 0.000 .4126947 .7270649

property 1.52315 .213146 3.01 0.003 1.157784 2.003816

priors 1.097332 .0145236 7.02 0.000 1.069233 1.126171

age .9962639 .0005034 –7.41 0.000 .9952777 .997251

tserved 1.015066 .0016809 9.03 0.000 1.011777 1.018366

Table 18.2 Hazard rate using the exponential distribution.

7 Note that we have not included all the variables listed in Section 18.1 to avoid the problem of

collinearity.



1 A hazard ratio of a covariate greater than 1 indicates increased hazard of experi-

encing the event of interest (re-arrest in the present example), holding the values

of all other covariates constant. In our example, the hazard ratio of about 1.63

therefore suggests that black convicts have an increased hazard of being re-ar-

rested compared to non-black convicts, by about 63%. Likewise, the hazard of

being re-arrested is about 59% higher for a convict with an alcohol problem than a

convict without that problem.

2 A hazard rate ratio of a covariate less than 1 indicates decreased hazard of experi-

encing the event of interest (again re-arrest in our example). Thus, the felon coef-

ficient of about 0.55 suggests those convicted of felony charge have decreased

hazard of re-arrest (45%) compared to convicts who are charged with other of-

fenses, ceteris paribus.8

3 A hazard rate ratio of 1 suggests no association between the particular covariate

and hazard. Thus, the length of time served in prison has no particular bearing on

the hazard of re-arrest.

The reader will notice the similarity between hazard ratios and odds ratios. Like an

odds ratio of 1, the hazard ratio of 1 means no effect. A hazard ratio of 20, like an odds

ratio of 20, means that the group under consideration has 20 times the hazard of the

comparison group.

Also keep in mind that the lower the hazard ratio, the higher the survival probability

at time t, and vice versa.

Instead of estimating the hazard ratios, we can estimate the coefficients of the

hazard rate by invoking the nohr (no hazard ratios) command in Stata. The results are

given in Table 18.3.
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Exponential regression — log relative-hazard form
No. of subjects = 1445 Number of obs = 1445
No. of failures = 552
Time at risk = 80013

LR chi2 (8) = 185.13
Log likelihood = –1647.3304 Prob > chi2 = 0.0000

t Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .4868107 .0880893 5.53 0.000 .314159 .6594625

alcohol .4642503 .1050623 4.42 0.000 .258332 .6701687

drugs .3185534 .0978762 3.25 0.001 .1267196 .5103871

felon –.6018934 .1444689 –4.17 0.000 –.8850472 –.3187395

property .4207805 .1399377 3.01 0.003 .1465078 .6950533

priors .0928821 .0132354 7.02 0.000 .0669411 .118823

age –.0037431 .0005053 –7.41 0.000 –.0047335 –.0027528

tserved .0149535 .0016559 9.03 0.000 .0117079 .018199

_cons –4.498082 .1713821 –26.25 0.000 –4.833985 –4.16218

Table 18.3 Estimated coefficients of hazard rate.

8 Since punishment for felony crime is more severe than some other crimes, felony convicts, once

released from prison, may not want to go back to prison and face yet another harsher punishment.



A positive coefficient in this table means increased hazard and a negative coeffi-

cient means decreased hazard. Thus a hazard coefficient of about 0.49 for blacks

means that black convicts have an increased hazard of recidivism. Literally inter-

preted, the coefficient of about 0.49 means that being a black convict increases the log

of hazard by 0.49.

You might think that the results in Tables 18.2 and 18.3 are not comparable. Actu-

ally, they are. To see this, take the coefficient of black of 0.4868107 from Table 18.3. If

you take the antilog of this coefficient, you will obtain 1.630165, the hazard ratio,

which is about the same as in Table 18.2.

So the difference between Tables 18.2 and 18.3 is only in the way the results are pre-

sented, not in the results themselves.

18.5 Weibull probability distribution

A major drawback of the exponential probability distribution to model the hazard rate

is that it assumes a constant hazard rate – that is, a rate that is independent of time. But

if h(t) is not constant, we have the situation of duration dependence – a positive dura-

tion dependence if the hazard rate increases with duration, and a negative duration de-

pendence if this rate decreases with duration. In case of positive duration dependence

the probability of leaving the initial state (e.g. unemployment) increases the longer one

is in that state, assuming other things remaining the same.

A probability distribution that takes into account duration dependence is the

Weibull probability distribution. For this distribution, it can be shown that

h t t( ) ; ,� � ��,� � ,� 1 0 0 (18.12)

and

S t ht( ) ( )� �e
�

(18.13)

If � �1, we obtain the exponential (probability) distribution with , � h. If � �1, the

hazard rate increases monotonically, but if � �1, it decreases monotonically.

Fitting Weibull to our example, we obtain the results in Table 18.4. In this table p

represents �. Since this value is less than 1 and is statistically significant, it indicates

the risk of recidivism declining over time (negative duration dependence) of about

21% per week.

This finding therefore casts doubt on the results of recidivism based on the expo-

nential probability distribution, even though the hazard rates shown in this table are

not much different from those shown in Table 18.2. Since the log likelihood ratio

based on the Weibull distribution of –1,630 is less negative than the log likelihood

ratio of –1,647 based on the exponential distribution, the Weibull distribution gives a

better fit.

Incidentally, if you want the coefficients rather than the hazard ratios, the results

are given in Table 18.5.

Again, the difference between the two preceding tables is in the way the results are

presented and not the results themselves.
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Weibull regression — log relative-hazard form
No. of subjects = 1445 Number of obs = 1445
No. of failures = 552
Time at risk = 80013

LR chi2 (8) = 170.11
Log likelihood = –1630.7151 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

black 1.589062 .1400574 5.25 0.000 1.336956 1.888706

alcohol 1.558327 .1636645 4.22 0.000 1.268413 1.914506

drugs 1.357881 .1329336 3.12 0.002 1.120807 1.6451

felon .5595468 .0806046 –4.03 0.000 .4219082 .7420871

property 1.504077 .2089878 2.94 0.003 1.145507 1.974888

priors 1.094469 .0145957 6.77 0.000 1.066233 1.123453

age .9964393 .0005006 –7.10 0.000 .9954587 .9974209

tserved 1.014259 .0017029 8.43 0.000 1.010926 1.017602

/ln_p –.2147974 .0388463 –5.53 0.000 –.2909347 –.13866

p .8067049 .0313375 .7475645 .8705239

1/p 1.239611 .0481543 1.148733 1.337677

Table 18.4 Estimation of hazard function with Weibull probability distribution.

Weibull regression — log relative-hazard form
No. of subjects = 1445 Number of obs = 1445
No. of failures = 552
Time at risk = 80013

LR chi2 (8) = 170.11
Log likelihood = –1630.7151 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .4631437 .0881384 5.25 0.000 .2903955 .6358918

alcohol .4436129 .1050258 4.22 0.000 .2377662 .6494596

drugs .3059252 .0978978 3.12 0.002 .114049 .4978014

felon –.5806281 .1440534 –4.03 0.000 –.8629676 –.2982887

property .4081794 .1389475 2.94 0.003 .1358473 .6805116

priors .0902693 .0133359 6.77 0.000 .0641314 .1164072

age –.003567 .0005024 –7.10 0.000 –.0045516 –.0025824

tserved .0141578 .0016789 8.43 0.000 .0108672 .0174484

_cons –3.723363 .2112758 –17.62 0.000 –4.137456 –3.30927

/ln_p –.2147974 .0388463 –5.53 0.000 –.2909347 –.13866

p .8067049 .0313375 .7475645 .8705239

1/p 1.239611 .0481543 1.148733 1.337677

Table 18.5 Coefficients of hazard rate using Weibull.



18.6 The proportional hazard model

A model that is quite popular in survival analysis is the proportional hazard (PH)

model, originally proposed by Cox.9 The PH model assumes that the hazard rate for

the ith individual can be expressed as:

h t X h ti
BXi( | ) ( )� 0 e (18.14)

In PH the hazard function consists of two parts in multiplicative form: (1) h t0 ( ),

called the baseline hazard, is a function of duration time, and (2) a part that is a func-

tion of explanatory variables (X may represent one or more variables other than time)

and the associated parameters B (one or more parameters, depending on the number

of explanatory variables).

A great advantage of the PH is that the ratio of the hazards for any two individuals,

indexed by i and j, depends only on the covariates or regressors but does not depend on

t, the time, as can be seen from the following.

h t X

h t X

h t

h t

i

j
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j

i

j
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( | )
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(� � � �0

0

e

e

e

e
e j) (18.15)

which is constant,10 assuming that the regressors Xi and Xj do not change over time,

that is, the covariates are time-independent.

A reason for the wide use of the PH model is that time is not included among the ex-

planatory variables, as a result of which the hazard rate is proportional to the baseline

hazard rate for all individuals. This can be expressed as:

h t X

h t

i BXi
( | )

( )0

� e (18.16)

Another reason for the popularity of the PH model is that we can obtain consistent

estimates of the parameters of the covariates without estimating the parameters of the

baseline hazard function. This can be accomplished by the method of partial likeli-

hood. We will not go into the mathematical details of this method, for they are some-

what involved, but modern statistical packages do this easily.

Returning to our illustrative example, we can estimate the PH model by invoking

the stcox command in Stata (Table 18.6).

Instead of the hazard ratios, if you are interested in the regression coefficients the

results are as shown in Table 18.7. Notice that the Cox PH model does not have an in-

tercept. This is because the intercept is absorbed in the baseline hazard h0(t).

The Z statistic reported in the preceding two tables is the Wald statistic for testing

the null hypothesis that the coefficient under consideration is zero. Under this null hy-

pothesis, Z follows an asymptotic standard normal distribution. As you can see from

these tables, individually each regression coefficient is highly significant. The p value

reported in these tables is the two-sided p value for the null hypothesis. The LR statis-

tic is an overall measure of the goodness of fit of the estimated model, an equivalent of
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9 D. R. Cox, Regression models and life tables, Journal of the Royal Statistical Society, series B, vol. 34,

1972, pp. 187–220.

10 What this says is that the ratio of the conditional probability that individual i leaves the current state to

the probability that individual j does so is assumed to be the same for all t.



the R2 value in the linear regression model. This value in the present instance is highly

significant.

Interpretation of the results

Take the hazard ratio of 0.997 (almost 1) for age. This means, if age increases by a year,

then the hazard of recidivism declines by 1%, ceteris paribus. The coefficient of 1.555

for black people suggests that the hazard of recidivism is higher for black people by
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failure _d: fail
analysis time _t: durat
Iteration 0: log likelihood = –3813.6724
Cox regression — Breslow method for ties
No. of subjects = 1445 Number of obs = 1445
No. of failures = 552
Time at risk = 80013

LR chi2 (8) = 161.02
Log likelihood = –3813.6724 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .4415151 .0881662 5.01 0.000 .2687125 .6143177

alcohol .4279981 .1050111 4.08 0.000 .2221801 .633816

drugs .2997025 .0979084 3.06 0.002 .1078056 .4915995

felon –.5734802 .1442779 –3.97 0.000 –.8562596 –.2907008

property .4190185 .1384093 3.03 0.002 .1477413 .6902958

priors .0888153 .0133928 6.63 0.000 .0625658 .1150647

age –.0034386 .0005 –6.88 0.000 –.0044187 –.0024585

tserved .0136502 .0016856 8.10 0.000 .0103464 .016954

Table 18.7 Coefficients of the Cox PH model.

Cox regression — Breslow method for ties
No. of subjects = 1445 Number of obs = 1445
No. of failures = 552
Time at risk = 80013

LR chi2 (8) = 161.02
Log likelihood = –3813.6724 Prob > chi2 = 0.0000

_t Haz.
Ratio

Std. Err. z P>|z| [95% Conf. Interval]

black 1.555061 .1371039 5.01 0.000 1.308279 1.848395

alcohol 1.534183 .1611062 4.08 0.000 1.248796 1.884789

drugs 1.349457 .1321232 3.06 0.002 1.113831 1.634929

felon .5635607 .0813093 –3.97 0.000 .4247478 .7477394

property 1.520469 .210447 3.03 0.002 1.159213 1.994305

priors 1.092879 .0146367 6.63 0.000 1.064564 1.121946

age .9965673 .0004983 –6.88 0.000 .9955911 .9975445

tserved 1.013744 .0017088 8.10 0.000 1.0104 1.017098

Table 18.6 Cox PH estimation of recidivism.



about 55.5% as compared to others. Other coefficients are to be interpreted in a similar

fashion.

Although quite popular, Cox’s PH model gets a little complicated if some of the

regressors included in the model are time-variant. Thus, if we had information on ex-in-

mates’ employment status in our example that was monitored, say, weekly, we would

have a time-variant regressor. Although methods are available to deal with this problem,

we will not pursue this topic in view of the introductory nature of survival analysis in this

chapter. The reader is advised to consult the references for further study.11

It may be added that there are tests of the appropriateness of the PH model, but

again we urge the reader to consult the references for these tests. An alternative to the

PH model is the accelerated failure time model (AFT). Again, the reader is advised to

consult the references.

18.7 Summary and conclusions

The primary objective of this chapter was to introduce the reader to some fundamen-

tal concepts in survival analysis. Since specialized books and articles have been written

on this topic, we cannot discuss all the details of all the SA models.

In this chapter we discussed three SA models, namely the exponential, the Weibull

and the proportional hazard model. Using the data on recidivism, we showed the

output of these models and how to interpret the output. The simplest of these models

is the exponential or constant hazard model. But this model is a special case of the

Weibull model. The proportional hazard model, quite popular in many fields, can be

estimated without estimating the baseline hazard model. A drawback of the PH model

is that it assumes that the covariates are time-invariant. However, the PH model can be

extended to take into account time-varying covariates. Also, the proportional assump-

tion of the PH model can be explicitly tested.

As noted, we did not discuss all the hazard models. In Table 18.8 we give the salient

features of the Exponential and Weibull models, along with the lognormal and

loglogistic models, which we have not discussed in this chapter. But they can be easily

estimated with the aid of packages like Stata.
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Probability distribution Hazard function Survival function

Exponential h(t) = h S t ht( ) � �e

Weibull h t t( ) � �,� � 1 S t ht( ) ( )� �e
�

Lognormal f t p t p ht( ) ( / ) [ ln( )]� 0 S t p ht( ) [ ln( )]� �1 *

Loglogistic
h t

ht

t
( )

( )

,

�
�

� �

�,�

,
� ,

�

�

1

1

0 0

S t
t

( )
( )

�
�

1

1 , �
**

Note: *ln(t) is normally distributed with mean –lnh and standard deviation 1/p
**ln(t) has a logistic distribution with mean –ln h and variance �2 23/ p , where ln stands
for natural log.

Table 18.8 Salient features of some duration models.

11 For an intuitive discussion, see Paul Allison, op cit., pp. 36–8.



Also note that when � �1, the Weibull distribution reduces to the exponential dis-

tribution with h � ,.

Exercises

18.1 Using Durat as the dependent variable, estimate an OLS regression in relation to

the regressors given in Table 18.1 and interpret your results.

How do these results compare with those obtained from the exponential, Weibull and

PH models?

18.2 Which of the regressors given in Section 18.1 are time-variant and which are

time-invariant? Suppose you treat all the regressors as time-invariant. Estimate the ex-

ponential, Weibull and PH survival models and comment on your results.

18.3 The Kleinbaum text cited in this chapter gives several data sets on survival analy-

sis in Appendix B. Obtain one or more of these data sets and estimate appropriate SA

model(s) so that you are comfortable in dealing with duration models.

18.4 The book by Klein and Moeschberger gives several data sets from the fields of bi-

ology and health.12 These data can be accessed from the website of the book. Pick one

or more data sets from this book and estimate the hazard function using one or more

probability distributions discussed in this chapter.

318 Topics in time series econometrics

12 Joseph P. Klein and Melvin L. Moeschberger, Survival Analysis: Techniques for Censored and

Truncated Data (Statistics for Biology and Health), Springer, New York, 2000.



19
Stochastic regressors and the method of

instrumental variables

Once I asked my students whether the following statements are true, false, or

uncertain:

A. More schooling leads to higher earnings.

B. The higher the proportion of older people in the population the higher the poverty

rate.

C. More school districts in a community means more competition and better schools.

D. Higher financial aid means more students will go to college.

E. Higher score in the verbal part of the SAT implies higher score on the mathemat-

ics part of the SAT.

F. Being a war veteran leads to higher lifetime earnings.

G. On average women are paid less than men because of gender discrimination.

H. A student’s grade in an examination in econometrics depends on his or her effort.

I. Increase in the money supply leads to higher inflation.

J. Watching TV leads to autism.

Although there were a few students in my class who thought that some of these state-

ments were true, a majority of them said that, “It depends...”.

Take statement A. Is it formal schooling per se or schooling and innate ability that

determine future earnings? So if we do not take into account student’s ability, we may

be inflating the contribution of education to earnings. Thus in a regression of earnings

on education (as measured by years of schooling) the variable education is likely to be

correlated with the regression error term, for that error term may include an ability

variable. In this case we say that education is an endogenous regressor, or more for-

mally, a stochastic regressor. As we show below, this will render the usual OLS regres-

sion results suspect.

As another case, consider statement D. For many students higher financial aid may

be a necessary condition for higher education, but it may not be sufficient, for there are

a variety of factors that are involved in deciding to go to college. Therefore a regression

of the decision to go to college (via a logit or probit model) on financial aid may exag-

gerate the impact of the latter because it does not take into account the omitted vari-

ables from this regression, which may very well be correlated with financial aid. Thus

financial aid may be a stochastic regressor.
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The main point of all the preceding statements and many more like that is that if we

have a stochastic regressor it may be correlated with the (regression) error term, which

may render the standard OLS estimation inapplicable, or at least unreliable. In the rest

of this chapter we study this problem a bit more formally and then consider some

applications.

19.1 The problem of endogeneity

A critical assumption of the CLRM stated in Eq. (1.8) is that the expected value of the

error term ui, given the values of the regressors, is zero. Symbolically,

E ui i( | )X � 0 (19.1) = (1.8)

In other words this assumption states that the unobserved factors represented by the

error term ui are not systematically related to the regressors or that the regressors are

truly exogenous. Note that X may contain one or more regressors.

With this and the other assumptions made in Chapter 1 we were able to establish

that the OLS estimators are best linear unbiased estimators (BLUE). With the added

assumption that the error term is normally distributed, we were able to show that OLS

estimators are individually normally distributed with the mean and variances given in

that chapter.

But what happens if assumption (19.1) fails – that is, there is correlation between

the error term and one or more regressors? To put it another way, what happens if X is

a stochastic, or random, variable and is correlated with the error term? This is known

as the case of an endogenous regressor – that is, a situation where the stochastic

regressors are correlated with the error term.

To give a concrete example, consider the following regression of the crime rate on

expenditure on police for the 50 states in the USA for 1992 in Table 19.1, which can be

found on the companion website.

Using these data, we obtained the regression results in Table 19.2. Judged by the

usual criteria, this regression looks impressive. The results suggest that increased ex-

penditure on police leads to higher crime rates! If this were true, it is indeed bad news.
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Dependent Variable: CRIME
Method: Least Squares
Sample: 1 50
Included observations: 50

Variable Coefficient Std. Error t-Statistic Prob.

C 3251.679 430.7541 7.548806 0.0000

POLICE EXPENDITURE 6.743364 1.490629 4.523839 0.0000

R-squared 0.298913 Mean dependent var 5085.200

Table 19.2 Crime rate regression.

Note: The crime rate is per 100,000 population.1

1 The crime categories are: assault with deadly weapon, arson, burglary, homicide, robbery, sex abuse,

stolen auto, and theft from auto.



Of course, we should be skeptical about these results because they do not make practi-

cal sense. It seems that some explanatory variables that belong in this regression are

left out and the police expenditure variable may very well be correlated with these

left-out variables.

In their now famous book, Freakonomics, Steven Levitt and Stephen Dubner argue

that to establish causality between crime and police

... we need a scenario in which more police are hired for reasons completely unre-

lated to rising crime. If, for instance, police were randomly sprinkled in some cities

and not in others, we could look to see whether crime declines in the cities where

the police happened to land.2

Levitt and Dubner point out that in the months leading up to election day, incum-

bent mayors harp upon their law-and-order credentials by hiring more police, even

when the crime rate does not seem to be increasing.

The point of all this discussion is that whether X causes Y may very well depend on

another variable Z that may cause Y indirectly through its influence on X, although Z

may not have any direct relationship with Y. Therefore, in a regression of Y on X, if we

do not take into account the influence of Z on X and relegate it to the equation error ui,

there is bound to be correlation between X and the error term. In other words, the

regressor X is a stochastic variable, which violates the assumption in Eq. (19.1). We can

show this with a path diagram, in which the arrow indicates the direction of associa-

tion between variables (Figure 19.1).3

In Figure 19.1(a) there is no arrow between X and u (i.e. no correlation), which rep-

resents the classical OLS assumption. Here OLS regression of X on Y will produce con-

sistent estimates of the regression coefficients. Figure 19.1(b) shows a correlation

between the regressor and the error term, which is the case of stochastic regressor. In

this case, as we show below, regression of Y on X will produce inconsistent estimates of

regression coefficients, even in large samples. In Figure 19.1(c), changes in Z do not

affect Y directly but indirectly through X. As we will show shortly, Z is called an instru-

mental variable (IV), or simply an instrument and show how such variable(s) enable

us to obtain consistent estimates of the regressor coefficients.

In what follows we first discuss the case of stochastic regressor and point out its

consequences for OLS estimation and then show how the method of instrumental

variable (IV) can be used in case we cannot rely on OLS.
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Figure 19.1 Relationships among variables.

2 Steven D. Levitt and Stephen J. Dubner, Freakonomics, William Morrow, New York, 2005, p. 126.

3 This figure is adapted from A. Colin Cameron and Pravin K. Trivedi, Microeconometrics Using Stata,

Stata Press, College Station, Texas, pp. 172–3.



19.2 The problem with stochastic regressors

To explain the basic ideas without resorting to matrix algebra, we will consider the

bivariate linear regression:

Y B B X ui i i� � �1 2 (19.2)

We assume that the regressor Xi is random. We now distinguish three cases.4

1 X and u are distributed independently: In this case for all practical purposes we

can continue to use OLS. As Greene notes:

The conclusion, therefore, is that the important results we have obtained thus

far for the least squares estimator, unbiasedness, and the Gauss–Markov theo-

rem holds whether or not we regard X as stochastic.5

2 X and u are contemporaneously (i.e. at the same time) uncorrelated: This is a

weaker condition than #1. In this case the classical OLS results hold only asymp-

totically – that is in large samples (see Appendix 19A.1.)

3 X and u are neither independently distributed nor are contemporaneously

uncorrelated: In this, the more serious case, the OLS estimators are not only

biased, but are also inconsistent. Intuitively, the reason for this is:

... the least-squares estimation method is designed in such a way that the total

variation in Y [TSS] can always be divided into two parts, one representing the

variation due to the explanatory variables [ESS] and the other representing the

variation due to other factors. But when the explanatory variable and the distur-

bance are correlated, such a division is not valid since it does not allow for the

joint effect of X and . [=u] on Y.6

This can be easily shown in the case of the bivariate regression. The OLS estimator

of B2 in Eq. (19.2) is given as:

b
x y

x

x Y

x

i i

i

i i

i
2 2 2

� �
�

�

�

�
(19.3)

where x X Xi i� �( ) and y Y Yi i� �( ).

Now substituting Eq. (19.2) into the right-hand side of Eq. (19.3), we obtain
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4 The following discussion follows Jan Kmenta, Elements of Econometrics, 2nd edn, Macmillan

Publishing Company, New York, 1986, pp. 334–41; William H. Greene, Econometric Analysis, 6th edn,

Pearson/Prentice-Hall, 2008; and Russell Davidson and James G. MacKinnon, Econometric Theory and

Methods, 2nd edn, Oxford University Press, New York, 2004.

5 Greene op cit., p. 50.

6 Kmenta, op cit., p. 340.
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where use is made of the fact that �xi � 0, because the sum of the deviations of a

random variable from its mean value is always equal to zero, and also because

� �x X xi i i/ 2 1� (see Exercise 19.1).

Now if we try to take the expectation of the preceding equation on both sides, we

run into a problem, for
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because the expectation operator, E, is a linear operator. Furthermore, the expectation

of the product of xi and ui is not the product of the expectations, because they are not

independent.7

The best we can do is to see how b2 behaves as the sample size increases indefinitely.

This we can do by using the concept of probability limit, or plim for short, which is

the standard procedure to find out if an estimator is consistent; that is, if it approaches

its true (population) value as the sample size increases indefinitely. So we proceed as

follows:
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where use is made of the properties of plim,8 n is the sample size, and cov means

covariance and var means variance.

As a result, we obtain:

b2 – B2 =
cov

var

( , )

( )

X u

X

i i

i

(19.7)
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8 These properties are: plim(X+Y) = plimX + plimY; plim(XY) = plimX.plimY; plim(X/Y) = plimX/plimY,

and the plim of a constant is that constant itself.



This may be called the (asymptotic) bias.

Now if the covariance between the regressor and the error term is positive, b2 will

overestimate the true B2, a positive bias. On the other hand, if the covariance term is

negative, b2 will underestimate B2, a negative bias. And the bias, positive or negative,

will not disappear no matter how large the sample is.

The upshot of the preceding discussion is that if a regressor and the error term are

correlated, the OLS estimator is biased as well as inconsistent. Now even if a single

regressor in a multiple regression is correlated with the error term, OLS estimators of all

the coefficients are inconsistent.9

19.3 Reasons for correlation between regressors and the error
term

Primarily there are four reasons why the regressor(s) may be correlated with the error

term:

1 Measurement errors in the regressor(s)

2 Omitted variable bias

3 Simultaneous equation bias

4 Dynamic regression model with serial correlation in the error term.

It is important that we study these sources of correlation between regressor(s) and

the error term to appreciate fully the method of instrumental variables.

Measurement errors in the regressor(s)

In Chapter 7 we noted that if there are errors of measurement in the regressor(s) the

OLS estimators are biased as well as inconsistent. To get a glimpse of this, we consider

the celebrated permanent income hypothesis (PIH) of the late Nobel laureate Milton

Friedman, which can be explained as follows?

Y B B X u Bi i i� � � � �1 2 20 1* ; (19.8)

where Y = current, or observed, consumption expenditure, Xi
* = permanent income

and ui = disturbance, or error, term. B2 here represents the marginal propensity to con-

sume (MPC), that is, the increase in consumption expenditure for an additional dol-

lar’s worth of increase in the permanent income, that is, the average level of income you

expect to be in the future.10

Of course, we do not have readily available measures of permanent income. So in-

stead of using permanent income we use observed or current income, Xi, which may

contain errors of measurement, say wi . Therefore, we can write

X X wi i i� �* (19.9)

That is, current income is equal to permanent income plus errors of measurement.
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9 Recall that in multiple regressions the cross-product terms of the regressors are involved in the

computation of the partial regression coefficients. Therefore an error in a regressor may affect the

coefficients of the other regressors in the model.

10 We could make permanent consumption (Yi
*) as a function of permanent income (Xi

*), but to keep the

algebra simple we will not do so.



Therefore, instead of estimating Eq. (19.8), we estimate
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where v u B wi i i� � 2 , a compound of equation and measurement errors.

Now even if we assume that wi has zero mean, is serially uncorrelated, and is

uncorrelated with ui, we can no longer maintain that the composite error term vi is in-

dependent of the regressor Xi because (assuming E vi( ) � 0) it can be shown that (see

Exercise 19.2)

cov( , )v X Bi i w� � 2
2
 (19.11)

This result shows that in the regression (19.10) the regressor Xi and the error term vi

are correlated, which violates the crucial assumption of CLRM that the error term and

the regressor(s) are uncorrelated.

As a result, it can be shown that the OLS estimate of B2 in Eq. (19.8) is not only

biased but is also inconsistent. It can be proved formally that (see Exercise 19.3)
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(19.12)

where plim means the probability limit, which, as mentioned before, we use to estab-

lish the consistency property of an estimator.

Since the term inside the bracket is expected to be less than 1, b2 will not converge

to its true MPC value whatever the sample size. If B2 is assumed positive, which makes

sense in the present case, b2 will be less than the true B2 – that is, b2 will underestimate

B2. More technically, it is biased toward zero.

As this exercise shows, errors of measurement in the regressor(s) can pose serious

problems in estimating the true coefficient.11

How, then, can we measure the true MPC? If somehow we can find a proxy or a tool

or an instrument for permanent income so that that proxy is uncorrelated with the

error term but is correlated with the regressor (presumably highly), we may be able to

measure the true MPC, at least in large samples. This is the essence of the method of in-

strumental variable(s). But how do we find a “good” proxy? We will answer this ques-

tion shortly.

Omitted variable bias

In Chapter 2 we discussed several cases of specification errors, such as the omission of

relevant variables, incorrect functional form, and incorrect probabilistic assumption

of the distribution of the error term and the like.

For example, consider the following model of wage determination – call it the wage

function:
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those errors can be absorbed in the equation error and we can still obtained unbiased estimates of the

regression coefficients, although the variances and standard errors of the estimators are larger than they

would have been in the absence of measurement errors in the regressand.



Y B B X B X ui i i i� � � �1 2 2 3 3 (19.13)

where Y is wages or earnings, X2 is education as measured by years of schooling, and X3

is (innate) ability.

Since direct measures of ability are hard to come by, suppose, instead of estimating

Eq. (19.13), we estimate the following function:

Yi = A1 + A2X2i + vi (19.14)

where vi is the error term.

That is, we omit the ability variable from the wage function. In this case, vi = ui +

B3X3i

Now it can be shown that (see Appendix 19A.2)

E a B B b( )2 2 3 32� � (19.15)

where b32 is the slope coefficient in the regression of X3 (the omitted variable) on X2

(the variable included in the model).

In other words, in the present instance, the expected value of the estimated slope

coefficient in Eq. (19.15) is equal to its true value (B2) plus the slope coefficient of the

left-out variable multiplied by b32. That is, it is biased. And there is no reason to believe

that this bias disappears as the sample size increases. In other words, the estimator is

not even consistent. For other consequences of omitting relevant variables, see

Chapter 7.

As in the case of the errors-in-regressor case, can we find an instrument for ability

so that we can estimate Eq. (19.13) and obtain consistent estimate of the education co-

efficient B2? Can we use mother’s or father’s education as a proxy for ability? We will

take up this question shortly after we discuss the remaining two sources of errors be-

tween regressor(s) and the error term.

Simultaneous equation bias

Consider the following pair of equations:

Yi = B1 + B2Xi + u1i (19.16)

Xi = A1 + A2Yi + u2i (19.17)

where Yi = crime rate in city i and Xi = expenditure on police in city i.

This is the “chicken or egg first”-type problem. Does the crime rate determine the

number of police and hence expenditure on police or does expenditure on police de-

termine the crime rate?

If you to estimate Eqs. (19.16) and (19.17) individually by OLS, you will find that Xi

and u1i in Eq. (19.16) are correlated. Likewise, if you estimate Eq. (19.17) by itself, you

will find that Yi and u2i are correlated – a classic case of a stochastic regressor corre-

lated with the error term (for proof, see Appendix 19A.3).

In the literature this situation is known as the simultaneity bias.

How do we handle this situation? As we show below, the technique of instrumental

variable can be used to resolve the problem in many cases.
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Dynamic regression and serial correlation in the error term

Return to Friedman’s permanent income hypothesis stated in Eq. (19.8). Since perma-

nent income, Xi
*, is not directly observable, let us consider the following mechanism

developed by Cagan and Friedman, known as the adaptive expectations, progressive

expectations, or error learning model:12

X X X Xt t t t
* * *( )� � � � �� �1 1 0 1, , (19.18)

Equation (19.18) states that “economic agents will adapt their expectations in the light

of past experience and that in particular they will learn from their mistakes”.13 More

specifically, Eq. (19.18) states that expectations are revised each period by a fraction ,
of the gap between the current value of the variable and its previous expected value,

that is between currently observed income and its expected or anticipated value in the

previous period. Another way of expressing this is to write Eq. (19.18) as:

X X Xt t t
* *( )� � � �, ,1 1 (19.19)

which shows that the value of the permanent income at time t is a weighted average of

the actual value of income at time t and its value expected in the previous period, with

weights of , and (1 – ,), respectively.

Substituting Eq. (19.19) into Eq. (19.8), we obtain, after suitable manipulation, the

following model:

Y B B X Yt t t t� � � � ��, , , 41 2 11( ) (19.20)

where

v u ut t t� � � �( )1 1, (19.21)

In the literature model (19.20) is known as the adaptive expectations model and ,
is known as the coefficient of expectations.

Model (19.20) is also known as a dynamic model because it expresses the current

consumption expenditure as a function of current or observed income and the lagged

value of current consumption expenditure.

It is interesting how with the help of a dynamic model we have been able to get rid of

the unobservable variable Xt
* . Since there is no such thing as a free lunch, in “simplify-

ing” the permanent income hypothesis, we have created some estimation problems.

First, Yt is random, so is Yt–1. Therefore we have a stochastic regressor on the

right-hand side of Eq. (19.20). Additionally, the error term4t is likely to be serially cor-

related, as it is a linear combination of the original error term, ui .

As a matter of fact, it can be shown that

cov( , )v vt t u� � �1
2,
 (19.22)

and also
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12 P. Cagan, “Monetary Dynamics of Hyperinflation”, in M. Friedman (ed.), Studies in the Quantitative

Theory of Money, University of Chicago Press, Chicao, 1956 and Milton Friedman, A Theory of

Consumption Function, National Bureau of Economic Research, Princeton University Press, Princeton, NJ,

1957. This model is based on the pioneering work of Koyck: L. M. Koyck, Distributed Lags and Investment

Analysis, North-Holland Publishing Company, Amsterdam, 1954.

13 G. K. Shaw, Rational Expectations: An Elementary Exposition, St. Martin’s Press, New York, 1984, p.

25.



cov( , )Y vt t u� � �1
2,
 (19.23)

As we have shown before, if a regressor is correlated with the error term, the OLS

estimators are not only biased but are also inconsistent, regardless of the sample size.

To summarize, in all the four cases we have considered there is a strong possibility

that the regressor(s) is (are) not only stochastic but also correlated with the error term.

As a result, the OLS estimators are biased as well inconsistent. This suggests that we

either abandon OLS or find a suitable alternative(s) which will produce estimators that

are at least consistent. One of the alternatives prominently suggested in the literature

is the method of instrumental variable(s), which we now discuss.

19.4 The method of instrumental variables

The main problem with the use of OLS in regression models that contain one or more

regressors that are correlated with the error term is that the OLS estimators are biased

as well as inconsistent. Can we find a “substitute” or “proxy” variables for the suspect

stochastic regressors such that the proxy variables produce consistent estimators of

the true (population) regression coefficients? If we can do that successfully, such vari-

ables are called instrumental variables or simply instruments. How do we find such

instruments? How do we know they are good instruments? Are there formal ways to

find out if the chosen instrument is indeed a good instrument?

To answer these questions, let us start with the simple linear regression given in Eq.

(19.2). Suppose in this regression that regressor X is stochastic and that it is correlated

with the error term u. Suppose a variable Z is a candidate instrument for X. To be a

valid instrument, Z must satisfy the following criteria:

1 Instrument relevance: That is, Z must be correlated, positively or negatively, with

the stochastic variable for which it acts as an instrument, variable X in the present

case. The greater the extent of correlation between the two variables, the better is

the instrument. Symbolically,

cov (Xi,Zi) � 0 (19.24)

2 Instrument exogeneity: Z must not be correlated with the error term u. That is,

cov (Zi,ui) =0 (19.25)

3 Not a regressor in its own right. That is, it does not belong in the original model. If it

does, the original model must be misspecified.

Before we proceed further, it may be noted that if we have a multiple regression

with several regressors and some of them are correlated with the error term, we must

find an instrument for each of the stochastic regressors. In other words, there must be

at least as many instruments as the number of stochastic regressors in the model. But we

will have more to say about this later.

As you can see, all these conditions may be hard to satisfy at the same time. So it is

not easy to find good instruments in every application. That is why sometimes the idea
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of instrumental variables sounds chimerical, although there are examples of successful

instruments.14

As an example of an interesting but somewhat questionable example of IV applica-

tion, Caroline Hoxby wanted to find out the relationship between student perfor-

mance and school competition. She estimated the following regression:

Test scores = B1 + B2 (Number of school districts) + error term

Suspecting that the regressor is stochastic, she used the number of streams in a

school district as an instrument for the number of school districts, for she observed

that areas with more school districts also had a lot of streams; presumably the streams

made natural boundaries for the school districts.15

How does IV estimation work? The answer follows.

IV estimation

To show how IV works, we will continue with the two-variable regression. As we know

the OLS estimator of B2 in Eq. (19.2) is:

b
x y

x

i i

i
2 2

�
�

�

where x X Xi i� � and y Y Yi i� � .

Now we use Z as an instrument for X in Eq. (19.2) and obtain:

b
z y

z x

i i

i i
2
IV �

�

�
(19.26)

where z Z Zi i� � .

Caution: Do not just put zi for xi in the formula for b2 given above and note carefully

that the denominator has both z and x terms.

Now noting that Y B B X ui i i� � �1 2 and, therefore,

y B x u ui i i� � �2 ( )

we obtain

b
z B x u u

z x

B
z u u

z x

i i i

i i

i i

i i

2
2

2

IV �
� �

� �
�

�

�

�

�

[ ( )]

( )
(19.27)

You can see the similarity between the OLS and IV estimators. Of course, if Z = X, the

IV estimator coincides with the OLS estimator.

The estimator of the intercept B1, following the usual formula, is:

b Y b X1 2� � IV (19.28)
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14 See, for instance, Jonathan Klick and Alexander Tabarrok, Using terror alert levels to estimate the

effect of police on crime, Journal of Law and Economics, University of Chicago, vol. 48, 2005, pp. 267–79.

15 Caroline M. Hoxby, Does competition among public schools benefit students and taxpayers?,

American Economic Review, 2000, vol. 90, pp. 1209–38.



In this expression the only difference from the usual OLS estimator of B1 is that we use

the slope coefficient estimated from the IV estimator.

Since we are assuming that in the population cov (Z, u)= 0, taking the probability

limit of Eq. (19.27) it can be shown that16

plimb2
IV = B2 (19.29)

that is, the IV estimator of B2 is consistent (see Exercise 19.4). But it should be added

that in finite, or small, samples this estimator is biased.

Although b2
IV is a consistent estimator of B2, in small samples it is biased. Further, it

can be shown that in large samples the IV estimator is distributed as follows:

b N B
x

u

i XZ
2 2

2

2 2

1IV ~ ,
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�
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#
$
$ (19.30)

Notice that the variance of the IV estimator involves the squared (population) cor-

relation between X and its instrument Z. In words, in large samples the IV estimator

b2
IV is normally distributed with mean equal to its population value and variance given

above. By contrast, the usual OLS estimator has the variance

var(b2) =

u

ix

2

2�
(19.31)

Since 0 12� ��XZ , the variance of the IV estimator will be larger than the variance of

the OLS estimator, especially so if�XZ
2 is small. In other words, the IV estimator is less

efficient than the OLS estimator. If�XZ
2 is small it suggests that Z is a weak instrument

for X. On the other hand, if it is large, it suggests that it is a strong instrument for X.

To give some idea how far the variances of IV and OLS estimators can diverge,

assume that � zx � 02. . In this case, variance of the IV estimator is 25 times as large as

that of the OLS estimator. If � zx � 01. , it is 100 times larger. In the extreme case, if

� zx � 0, the variance of the IV estimator is infinite. Of course, if � zx �1, the two vari-

ances are the same, which is another way of saying that the variable X is its own instru-

ment. Note that in practice we estimate � xz by its sample counterpart, rxz .

We can use the variance of the IV estimator given in Eq. (19.30) to establish confi-

dence intervals and test hypotheses, assuming that our sample size is reasonably large.

But notice that the variance of the IV estimator is heteroscedastic.17 Therefore we will

have to use the White-type robust standard errors that correct for heteroscedasticity.

But modern software packages can obtain robust standard errors by invoking the

appropriate command.

An interesting point to note about the preceding discussion is that in obtaining

consistent estimates via the IV method we pay a price in terms of wider confidence in-

tervals because of the larger variance of IV estimators, especially if the selected instru-

ment is a weak proxy for the original regressor. Again, there is no such thing as a free

lunch!
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and not the population quantities.

17 This is true for the simple model considered here. For models involving several regressors, the

formulas of variances and covariances are complicated, which the reader can find in the references.



19.5 Monte Carlo simulation of IV

To show how OLS can distort the results in cases of stochastic regressor(s) correlated

with the error term, Cameron and Trivedi conducted a Monte Carlo simulation exper-

iment.18 They assumed the following:

Y X ui i i� �05. (19.32)

X Z vi i i� � (19.33)

Z N u N v N u vi i i i i~ ( , ); ~ ( , ); ~ ( , ); ( , ) .21 01 01 08cov � (19.34)

In words, the true slope coefficient in the regression of Yi on Xi is assumed known and

is equal to 0.5. Further, the regressor Xi is equal to the instrumental variable Zi and the

error term vi. The authors assumed that Zi was distributed normally with mean 2 and

variance 1. The error terms were jointly normally distributed, each with mean of 0 and

variance of 1, and the correlation between the two error terms was assumed to be 0.8.

With this structure, they generated a sample size of 10,000 and obtained the follow-

ing results:

Method OLS IV

Constant –0.804 –0.017

(0.014) (0.022)

X 0.902 0.510

(0.006) (0.010)

R2 0.709 0.576

Note: Figures in parentheses are robust standard errors, that is, standard errors cor-

rected for heteroscedasticity.

These results are revealing. The true model given in Eq. (19.32) has no intercept in

it, but the OLS results show that its value is –0.804 and that it is statistically significant

(t = –0.804/0.014 = –57.43). Secondly, the OLS estimate of the slope coefficient is

0.902, whereas we know the true slope coefficient is 0.5.

The IV estimates, on the other hand, are very close to the true values; the intercept

coefficient is statistically indifferent from zero and the slope coefficient of 0.51 is about

the same as the true slope coefficient of 0.5. However, notice that the standard errors

of the IV estimates are larger than the OLS standard errors, a point made earlier.

The Monte Carlo experiment of Cameron and Trivedi shows dramatically how

OLS estimation can distort the true results.

A note on Monte Carlo experiments: In such experiments we assume a true model

and generate several sets of artificial data that will produce several sets of parameter

estimates; from these estimates we obtain their sampling distribution to see how

they match with competing methods of estimating the parameters of interest.19
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19 For a graphic presentation and other details of this procedure, see Peter Kennedy, A Guide to

Econometrics, 6th edn, Blackwell Publishing, 2008, p. 23–5.



19.6 Some illustrative examples

Before we proceed to an extended numerical example of IV estimation, let us consider

a few examples of IV application.

Effect of police on crime using terror alert level

In Table 19.2 we found that the effect of police (as represented by expenditure on

police) is positively related to the crime rate, which is counterintuitive. We raised the

possibility that this result could be due to simultaneity bias. To assess the impact of

police on crime, Jonathan Klick and Alexander Tabarrok used an interesting instru-

ment that avoids the simultaneity problem.20

The instrument they used was the alert level that was instituted by the Department

of Homeland Security (DHS) in the wake of 9/11. These alert levels are low (green),

guarded (blue), yellow (elevated), orange (high), and red (severe). Their hypothesis was

that the level of crime decreases on high alert days in Washington, DC because of in-

creased police presence on the streets.

Based on the data for 506 days (12 March 2002 to 30 July 2003), during which there

were 55,882 crimes (about an average of 110 per day), they first regressed the daily DC

crime totals on the level of alert (Eq. 1) and then on the alert level and the log of

mid-day public transport ridership (Eq. 2) as shown in Table 19.3.

Note: Alert is a dummy variable taking the value of 1 on high alert days and 0 on ele-

vated alert days. The authors also included dummies representing the days of the week

to control for day effects, but these coefficients are not reported. * and ** denote 5%

and 1% significance levels, respectively.

As Eq. (1) shows, there was an average decline of about 7 crimes per day, and this

effect is statistically significant. In Eq. (2) they include the log of mid-day ridership as a

proxy for tourism. Allowing for this, total crimes decreased by about 6 per day, not a

big difference from the effect in Eq. (1). The positive coefficient of the log-ridership

coefficient suggests that a 10% increase in ridership increases total crimes by an aver-

age of 1.7 per day, not strong enough to counter the strong presence of police on high

alert days.21

The reader is advised to read this article for further details. But the point to note is

that sometimes one can find meaningful proxies to resolve the problem(s) created by

stochastic regressors.
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(1) (2)

High alert –7.316
(2.877)*

–6.046
(2.537)*

Log of mid-day ridership – 17.341
( 5.309)**

R2 0.14 0.17

Table 19.3 Crimes on high alert days.

20 See Klick and Tabarrok, op cit.

21 Recall our discussion of the lin-log model in Chapter 2. Multiply the coefficient 17.341 by 0.01, which

gives 0.17341. Hence a 10% increase in ridership leads to about 1.7 increase in the crime rate.



The permanent income hypothesis (PIH)

In discussing Friedman’s permanent income hypothesis earlier, we showed that if re-

gress PCE on current DPI in lieu of permanent income we are likely to obtained biased

estimates of the marginal propensity to consume because of errors of measurement,

and this bias does not diminish even if we increase the sample size indefinitely.

The difficulty here is that we do not know how to measure permanent income. One

method of obtaining a measure of permanent income is to take a weighted average of

past incomes over a certain period and take that as a (crude) measure of permanent

income.

The literature is full of discussion on PIH in its various forms and the problems of

measuring the permanent income.22 For example, Fumo Hiyashi uses lagged variables

such as lagged per capita exports and lagged per capita government spending as in-

struments for permanent income, as he argues these variables are correlated with con-

sumers’ permanent income.23

Friedman himself estimated permanent income as a moving average of current and

past income with geometrically declining weights, restricting the lags to 17 terms. But

with Cagan’s adaptive expectations model, discussed earlier, it is not necessary to re-

strict the lags arbitrarily. The details of his strategy as well as the details of Cagan’s

model can be found in the references24 (see also Exercise 19.5).

Law enforcement spending and the crime rate

To illustrate the simultaneity problem, Barreto and Howland considered the following

model (notations changed from the original).25

Enforcement Spendingi = A A Crimerate ui i1 2 1� � (19.35)

Crime Ratei i

i i

B B Enforcement Spending

B Gini u

� �

� �

1 2

3 2

(19.36)

where Gini is the Gini coefficient, a measure of income inequality. This coefficient lies

between 0 (perfect equality) and 1 (complete inequality: one person owns all the

income.) The closer this coefficient to 0, the greater the income equality. Contrarily,

the closer it is to 1, the greater the income inequality.

In Eq. (19.36) B3 is expected to be positive because more income inequality suggests

higher crime rates, ceteris paribus. But notice that there is no logical reason to expect

that Gini belongs in Eq. (19.35). We can treat Gini as an exogenous variable, deter-

mined outside the system, and so we do not expect it to be correlated with the error

term, u2i. But this is not the case with the other two variables, for they are mutually

dependent.
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“Measurement errors in survey data”, in J. J. Heckman and E. E. Leamer (eds.), Handbook of Econometrics,

vol. V., Amsterdam, North Holland, 2001, pp. 3705–843.

23 See Fumio Hayashi, The permanent income hypothesis: estimation and testing by instrumental

variables, Journal of Political Economy, vol. 90, no. 5, 1982, pp. 895–916.

24 See Kenneth F. Wallis, Topics in Applied Econometrics, 2nd edn, University of Minnesota Press, 1980,

Chapter 1; Gujarati/Porter, op cit., Chapter 17.

25 Humberto Barreto and Frank M. Howland, Introductory Econometrics: Using Monte Carlo Simulation

with Microsoft Excel, Cambridge University Press, New York, 2006, Chapter 24.



If we solve Eqs. (19.35) and (19.36) simultaneously, treating Gini as exogenous (a

kind of instrument), we obtain:

Enforcement Spendingi = C C Gini ui i1 2 3� � (19.37)

Crime Ratei = D D Gini ui i1 2 4� � (19.38)

where the coefficients in these equations are (nonlinear) combinations of the coeffi-

cients in Eqs. (19.35) and (19.36). Also, the error terms in these equations are (nonlin-

ear) combinations of the error terms in Eqs. (19.35) and (19.36).

Equations (19.37) and (19.38) are known as reduced form equations in the lan-

guage of simultaneous equation models.26 Compared with the reduced form equa-

tions, Eqs. (19.35) and (19.36) are called the structural equations. In reduced form

equations only exogenous or predetermined (i.e. lagged endogenous or lagged exoge-

nous) variables appear on the right-hand side of the equations.

The coefficients of the reduced form equations are called the reduced form coeffi-

cients, whereas those in the structural equations are called the structural coefficients.

We can estimate reduced form equations by OLS. Once the reduced form coeffi-

cients are estimated, we may be able to estimate one or all of the structural coefficients.

If we can estimate all the structural coefficients from the reduced form coefficients, we

say the structural equations are identified; that is, we can obtain unique estimates of

the structural coefficients. If this is not possible for one or more structural equations,

we say that the equation(s) is (are) unidentified. If we obtain more than one estimate

for one or more parameters of a structural equation, we say that equation is

overidentified.

It may be noted that the method of obtaining the structural coefficients from the re-

duced form coefficients is known as the method of indirect least squares – we first es-

timate the reduced form coefficients and then try to retrieve the structural

coefficients.

Shortly, we will discuss the method of two-stage least squares (2SLS) and show

how it aids in finding instrumental variables.

Toward that purpose we now consider a numerical example.

19.7 A numerical example: earnings and educational
attainment of youth in the USA

The National Longitudinal Survey of Youth 1979 (NLSY79) is a repeated survey of a

nationally representative sample of young males and females between ages 14 to 21 in

1979. From 1979 until 1994 the survey was conducted annually, but since then it is

conducted bi-annually. Originally the core sample consisted of 3,003 males and 3,108

females.

The NLSY cross-section data is provided in 22 subsets, each subset consisting of

randomly drawn sample of 540 observations: 270 males and 270 females.27 Data are

collected on a variety of socio-economic conditions and is quite extensive. The major
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27 The data used here can be obtained from http://www.bls.gov/nls/. Some of the data can be

downloaded and more extensive data can be purchased.



categories of data obtained pertain to gender, ethnicity, age, years of schooling, highest

educational qualification, marital status, faith, family background (mother’s and fa-

ther’s education and number of siblings), place of living, earning, hours, years of work

experience, type of employment (government, private sector, self-employed), and the

region of the country (North central, North eastern, Southern and Western).

We will use some of these data for 2002 (sample subset number 22) to develop an

earnings function. Following the tradition established by Jacob Mincer, we consider

the following earnings function:28

ln Earni = B1 + B2Si + B3 Wexpi + B4 Genderi +

B5 Ethblacki + B6 Ethhispi + ui (19.39)

where ln Earn = log of hourly earnings in $, S = years of schooling (highest grade com-

pleted in 2002), Wexp = total out-of-school work experience in years as of the 2002 in-

terview, Gender = 1 for female and 0 for men, Ethblack = 1 for blacks, Ethhis = 1 for

Hispanic; non-black and non-Hispanic being the left-out, or reference, category.

As you can see, some variables are quantitative and some are dummy variables. A

priori, based on prior empirical evidence, we expect B2 > 0, B3 > 0, B4< 0; B5< 0, and

B6 < 0.

For the purpose of this chapter our concern is with the education variable S in the

above model. If (native) ability and education are correlated, we should include both

variables in the model. However, the ability variable is difficult to measure directly. As

a result, it may be subsumed in the error term. But in that case the education variable

may be correlated with the error term, thereby making education an endogenous or

stochastic regressor. From our discussion of the consequences of stochastic

regressor(s) it would seem that if we estimate Eq. (19.39) by OLS the coefficient of S

will be biased as well as inconsistent. This is so because we may not be able to find the

true impact of education on earnings that does not net out the effect of ability. Natu-

rally, we would like to find a suitable instrument or instruments for years of schooling

so that we can obtain consistent estimate of its coefficient.

Before we search for the instrument(s), let us estimate Eq. (19.39) by OLS for com-

parative purposes. The regression results using Stata 10 are given in Table 19.4.

All the estimated coefficients have the expected signs and under the classical as-

sumptions all the coefficients are statistically highly significant, the sole exception

being the dummy coefficient for Hispanics.

These results show that compared to male workers, female workers on average earn

less than their male counterpart, ceteris paribus. The average hourly earnings of black

workers is lower than that of non-black non-Hispanic workers, ceteris paribus, which

is the base category. Qualitatively, the sign of the Hispanic coefficient is negative, but

the coefficient is statistically insignificant.

Noting that the regression model is log-lin, we have to interpret the coefficients of

quantitative and qualitative (i.e. dummy) variables carefully (see Chapter 2 on func-

tional forms). For quantitative variables, schooling and work experience, the esti-

mated coefficients represent semi-elasticities. Thus, if schooling increases by a year,

the average hourly earnings go up by about 13%, ceteris paribus . Similarly, if work
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Hickman, Lance J. Lochner and Petra E. Todd, Fifty Years of Mincer Earnings Functions, National Bureau of

Economic Research, Working Paper No. 9732, May 2003.



experience goes up by 1 year, the average hourly earnings go up by about 3.2%, ceteris

paribus.

To obtain the semi-elasticity of a dummy variable, we first take the anti-log of the

dummy coefficient, subtract 1 from it, and multiply the difference by 100%. Following

this procedure, for the female dummy coefficient we obtain a value of about 0.7397,

which suggests that females on average earn about 26% less than the male workers.

The semi-elasticities for black and Hispanic workers are about 0.81 and 0.90, respec-

tively. This suggests that black and Hispanic workers on average earn less than the

base category by about 19% and 10%, although the semi-elasticity for Hispanics is not

statistically different from the base category.

As we have discussed, since the education variable does not necessarily take into ac-

count ability, it may be correlated with the error term, thus rendering it a stochastic

regressor. If we can find a suitable instrument for schooling that satisfies the three re-

quirements that we specified for a suitable instrument, we can use it and estimate the

earnings function by the IV method. The question is what may be a proper instru-

ment? This question is difficult to answer categorically. What we can do is to try one or

more proxies and compare the OLS results given in Table 19.4 and see how far the OLS

results are biased, if any.

In the data we have information on mother’s and father’s education (as measured by

years of schooling), number of siblings, and the ASVAB verbal (word knowledge) and

mathematics (arithmetic reasoning) scores.

In choosing a proxy or proxies we must bear in mind that such proxies must be

uncorrelated with the error term but must be correlated (presumably highly) with the

stochastic regressor(s) and must not be a candidate in their own right as regressors – in

the latter case, the model used in the analysis will suffer from model specification

errors. It is not always easy to accomplish these entire objectives in every case. So very
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regress lEarnings s female wexp ethblack ethhisp,robust
Linear regression Number of obs = 540

F(5, 534) = 50.25
Prob > F = 0.0000

R-squared = 0.3633
Root MSE = .50515

Robust

lEarnings Coef. Std. Err. t P>|t| [95% Conf. Interval]

S .1263493 .0097476 12.96 0.000 .1072009 .1454976

female –.3014132 .0442441 –6.81 0.000 –.3883269 –.2144994

wexp .0327931 .0050435 6.50 0.000 .0228856 .0427005

ethblack –.2060033 .062988 –3.27 0.001 –.3297381 –.0822686

ethhisp –.0997888 .088881 –1.12 0.262 –.2743881 .0748105

_cons .6843875 .1870832 3.66 0.000 .3168782 1.051897

Note: Regress is Stata’s command for OLS regression. This command is followed first by
the dependent variables and then the regressors. Sometimes additional options are given,
such as robust, which computes robust standard errors – in the present case standard
errors corrected for heteroscedasticity, a topic we have discussed in the chapter on
heteroscedasticity.

Table 19.4 Earnings function, USA, 2000 data set.



often it is a matter of trial and error, supplemented by judgment or “feel” for the

subject under study.

However, there are diagnostic tests which can tell us if the chosen proxy or proxies

are appropriate, tests which we will consider shortly. The data gives information on

mother’s schooling (Sm), which we will use as the instrument for participant’s school-

ing. The thinking here is that S and Sm are correlated, a reasonable assumption. For

our data the correlation between the two is about 0.40. We have to assume that Sm is

uncorrelated with the error term. We also assume that Sm does not belong in the par-

ticipant’s earning function, which seems reasonable.

We accept for the time being the validity of Sm as an instrument, which will be

tested after we present the details of IV estimation.

To use Sm as the instrument for S and estimate the earnings function, we proceed in

two stages:

Stage 1: We regress the suspected endogenous variable (S) on the chosen instru-

ment (Sm) and the other regressors in the original model and obtain the estimated

value of S from this regression; call it S-hat.

Step 2: We then run the earnings regression on the regressors included in the origi-

nal model but replace the education variable by its value estimated from the Step 1

regression.

This method of estimating the parameters of the model of interest is appropriately

called the method of two-stage least squares (2SLS), for we apply OLS twice. There-

fore the IV method is also known as 2SLS.

Let us illustrate this method (Table 19.5). Using the estimated S-hat value from this

regression, we obtain the second stage regression 2SLS (Table 19.6).

Note that in this (log) earnings function, unlike the one reported in Table 19.4, we

use S-hat (estimated from the first-stage of 2SLS) instead of S as the regressor. How-

ever, the standard errors reported in Table 19.6 are not correct because they are based

on the incorrect estimator of the variance of the error term, ui. The formula to correct
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regress s female wexp ethblack ethhisp sm

Source SS df MS Number of obs = 540

F( 5, 534) = 35.06

Model 822.26493 5 164.452986 Prob > F = 0.0000

Residual 2504.73322 534 4.69051165 R-squared = 0.2471

Adj R-squared = 0.2401

Total 3326.99815 539 6.17253831 Root MSE = 2.1658

s Coef. Std. Err. t P>|t| [95% Conf. Interval]

female –.0276157 .1913033 –0.14 0.885 –.4034151 .3481837

wexp –.1247765 .0203948 –6.12 0.000 –.1648403 –.0847127

ethblack –.9180353 .2978136 –3.08 0.002 –1.503065 –.3330054

ethhisp .4566623 .4464066 1.02 0.307 –.420266 1.333591

Sm .3936096 .0378126 10.41 0.000 .3193298 .4678893

_cons 11.31124 .6172187 18.33 0.000 10.09876 12.52371

Table 19.5 First stage of 2SLS with Sm as instrument.



the estimated standard errors is rather involved. So it is better to use software like

Stata or Eviews that not only correct the standard errors, but also obtain the 2SLS esti-

mates without explicitly going through the cumbersome two-step procedure.

To do this, we can use the ivreg (instrumental variable regression) command of

Stata. Using this command, we obtain the results in Table 19.7.

Observe that the estimated coefficients in the preceding two tables are the same,

but the standard errors are different. As pointed out, we should rely on the standard

errors reported in Table 19.7. Also notice that with the ivreg command we need only

one table, instead of two, as in the case of the rote application of 2SLS.

19.8 Hypothesis testing under IV estimation

Now that we have estimated the earnings function using the IV method, how do we

test hypotheses about an individual regression coefficient (like the t test in CLRM) and

hypotheses about several coefficients collectively (like the F test of CLRM)? For the

time being, assume that the instrument we have chosen (Sm) is the appropriate instru-

ment for schooling, although we will provide a test to find out if this is indeed correct

in the following section.

As Davidson and MacKinnon note, “Because the finite sample distributions of IV

estimators are almost never known, exact tests of hypotheses based on such estimators

are almost never available”.29

However, in large samples it can be shown the IV estimator is approximately nor-

mally distributed with mean and variance as shown in Eq. (19.30). Therefore, instead

of using the standard t test, we use the z test (i.e. the standard normal distribution) as

shown in Table 19.7. The z values in this table are all individually highly statistically

significant, save the coefficient of Hispanic.
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regress lEarnings s_hat female wexp ethblack ethhisp

Source SS df MS Number of obs = 540

F(5, 534) = 24.26

Model 39.6153236 5 7.92306472 Prob > F = 0.0000

Residual 174.395062 534 .326582514 R-squared = 0.1851

Adj R-squared = 0.1775

Total 214.010386 539 .397050809 Root MSE = .57147

lEarnings Coef. Std. Err. t P>|t| [95% Conf. Interval]

S_hat .140068 .0253488 5.53 0.000 .0902724 .1898636

female –.2997973 .0505153 –5.93 0.000 –.3990304 –.2005642

wexp .0347099 .0064313 5.40 0.000 .0220762 .0473437

ethblack –.1872501 .0851267 –2.20 0.028 –.3544744 –.0200258

ethhisp –.0858509 .1146507 –0.75 0.454 –.3110726 .1393708

_cons .4607716 .4257416 1.08 0.280 –.3755621 1.297105

Table 19.6 Second stage of 2SLS of the earnings function.

29 Davidson and MacKinnon, op cit., pp. 330–5.



To test joint hypotheses of two or more coefficients, instead of using the classical F

test we use the Wald test, which is a large sample test. The Wald statistic follows the

chi-square statistic with degrees of freedom equal to the number of regressors esti-

mated: 5 in Table 19.7. The null hypothesis, as in the usual F test, is that all the

regressor coefficients are zero simultaneously, that is, collectively none of the

regressors have any bearing on (log) earnings. In our example the chi-square value is

about 138 and the probability of obtaining such a chi-square value or greater is

practically nil.

In other words, collectively all the regressors have important impact on hourly

earnings.

A caution on the use of R2 in IV estimation

Although we have presented the R2 for the IV regressions given in the preceding two

tables, it does not have the same interpretation as in the classical linear regression

model and sometimes it can actually be negative. Hence the reported R2 in IV regres-

sions should be taken with a grain of salt.30

Diagnostic testing

Having presented the basics of IV estimation, we now consider several questions re-

garding the IV methodology. Because of their importance in practice, we discuss these

questions sequentially.

A How do we know that a regressor is truly endogenous?

B How do we find out if an instrument is weak or strong?
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. ivregress 2sls lEarnings female wexp ethblack ethhisp ( S = Sm),robust
(Instrumental variables (2SLS) regression Number of obs = 540
Wald chi2(5) = 138.45
Prob > chi2 = 0.0000
R-squared = 0.3606
Root MSE = .50338

Robust

lEarnings Coef. Std. Err. z P>|z| [95% Conf. Interval]

s .140068 .0217263 6.45 0.000 .0974852 .1826508

female –.2997973 .043731 –6.86 0.000 –.3855085 –.2140861

wexp .0347099 .0055105 6.30 0.000 .0239095 .0455103

ethblack –.1872501 .0634787 –2.95 0.003 –.3116661 –.0628342

ethhisp –.0858509 .0949229 –0.90 0.366 –.2718963 .1001945

_cons .4607717 .3560759 1.29 0.196 –.2371241 1.158668

Instrumented: S
Instruments: female wexp ethblack ethhisp sm

Table 19.7 One step estimates of the earnings function (with robust standard

errors).

30 The conventionally computed coefficient of determination is defined as R RSSTSS2 1� � / , but in case

of IV estimation RSS can be greater than TSS, making R2 negative.



C What happens if we introduce several instruments for a stochastic regressor? And

how do we test the validity of all the instrument?

D How do we estimate a model when there is more than one stochastic regressor?

In what follows we answer these questions sequentially.

19.9 Test of endogeneity of a regressor

We have been working on the assumption that S in our example is endogenous. But we

can test this assumption explicitly by using one of the variants of the Hausman test.

This test is relatively simple, and involves two steps:

Step 1: We regress the endogenous S on all the (nonstochastic) regressors in

the earnings function plus the instrumental variable(s) and obtain residuals from

this regression; call it S-hat.

Step 2: We then regress lEarnings on all the regressors, including the (stochas-

tic) S and the residuals from Step I. If in this regression the t value of the residuals

variable is statistically significant, we conclude that S endogenous or stochastic. If it

is not, then there is no need for IV estimation, for in that case S is its own

instrument.

Returning to our example, we obtain the results in Table 19.8.

The results of the second step regression are as given in Table 19.9.

Since the coefficient of shat is not statistically significant, it would seem that school-

ing is not an endogenous variable. But we should not take these results at face value be-

cause we have cross-sectional data and heteroscedasticity is usually a problem in such

data. Therefore we need to find heteroscedasticity-corrected standard error, such as

the HAC standard errors discussed the chapter on heteroscedasticity.
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regress s female wexp ethblack ethhisp sm

Source SS df MS Number of obs = 540

F( 5, 534) = 35.06

Model 822.26493 5 164.452986 Prob > F = 0.0000

Residual 2504.73322 534 4.69051165 R-squared = 0.2471

Adj R-squared = 0.2401

Total 3326.99815 539 6.17253831 Root MSE = 2.1658

S Coef. Std. Err. t P>|t| [95% Conf. Interval]

female –.0276157 .1913033 –0.14 0.885 –.4034151 .3481837

wexp –.1247765 .0203948 –6.12 0.000 –.1648403 –.0847127

ethblack –.9180353 .2978136 –3.08 0.002 –1.503065 –.3330054

ethhisp .4566623 .4464066 1.02 0.307 –.420266 1.333591

sm .3936096 .0378126 10.41 0.000 .3193298 .4678893

_cons 11.31124 .6172187 18.33 0.000 10.09876 12.52371

. predict shat,residuals

Table 19.8 Hausman test of endogeneity of schooling: first step result.



We can use the robust standard error command in Stata to obtain the

heteroscedasticity-corrected standard errors, which are given in Table 19.10.

Now the coefficient of the shat variable is statistically significant, at about the 8%

level, indicating that education (schooling) seems to be endogenous.

19.10 How to find whether an instrument is weak or strong

If an instrument used in the analysis is weak in the sense that it is poorly correlated

with the stochastic regressor for which it is an instrument, the IV estimator can be se-

verely biased and its sampling distribution is not approximately normal, even in large
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egress lEarnings s female wexp ethblack ethhisp shat

Source SS df MS Number of obs = 540

F( 6, 533) = 50.80

Model 77.8586985 6 12.9764498 Prob > F = 0.0000

Residual 136.151687 533 .255444066 R-squared = 0.3638

Adj R-squared = 0.3566

Total 214.010386 539 .397050809 Root MSE = .50541

lEarnings Coef. Std. Err. t P>|t| [95% Conf. Interval]

S .140068 .0224186 6.25 0.000 .0960283 .1841077

female –.2997973 .044676 –6.71 0.000 –.38756 –.2120346

wexp .0347099 .0056879 6.10 0.000 .0235365 .0458834

ethblack –.1872501 .0752865 –2.49 0.013 –.3351448 –.0393554

ethhisp –.0858509 .1013977 –0.85 0.398 –.2850391 .1133373

shat –.0165025 .0245882 –0.67 0.502 –.0648041 .0317992

_cons .4607717 .3765282 1.22 0.222 –.2788895 1.200433

Table 19.9 Hausman test of endogeneity of schooling: second step results.

regress lEarnings s female wexp shat,vce(robust)
Linear regression Number of obs = 540
F( 4, 535) = 59.14
Prob > F = 0.0000
R-squared = 0.3562
Root MSE = .50747

Robust

lEarnings Coef. Std. Err. t P>|t| [95% Conf. Interval]

S .1642758 .0209439 7.84 0.000 .1231334 .2054183

female –.3002845 .0443442 –6.77 0.000 –.3873947 –.2131744

wexp .0390386 .0053869 7.25 0.000 .0284565 .0496207

shat –.0407103 .022955 –1.77 0.077 –.0858034 .0043828

_cons .0311987 .3380748 0.09 0.927 –.6329182 .6953156

Table 19.10 Hausman endogeneity test with robust standard errors.



samples. As a consequence, the IV standard errors and the confidence intervals based

on them are highly misleading, leading to hypotheses tests that are unreliable.

To see why this is the case, refer to Eq. (19.30). If � xz in this equation is zero, the

variance of the IV estimator is infinite. If� xz is not exactly zero, but very low (the case

of a weak instrument), the IV estimator is not normally distributed, even in large sam-

ples. But how do we decide in a given case whether an instrument is weak?

In the case of a single endogenous regressor a rule of thumb says that an F statistic of

less than 10 in the first step of the Hausman test suggests that the chosen instrument is

weak. If it is greater than 10, it probably is not a weak instrument.31 In the case of a

single (stochastic) regressor, this rule translates into a a t value of about 3.2 because of

the relationship between the F and t statistics, namely, that F tk k1
2

, � , where for the F

statistic has 1 df in the numerator and k df in the denominator.

On that score, in our example Sm (mother’s schooling) seems to be a strong instru-

ment for S because the value of the F statistic in the first stage of the two-stage proce-

dure is about 35, which exceeds the threshold value of 10. But this rule of thumb, like

most rules of thumb, should not be used blindly.

19.11 The case of multiple instruments

Since there are competing instruments, education may be correlated with more than

one instrumental variable. To allow for this possibility, we can include more than one

instrument in the IV regression. This is often done with the aid of two-stage least

squares (2SLS) that we just discussed.

Step 1: We regress the suspected variable on all the instruments, and obtain the es-

timated value of the regressor.

Step 2: We then run the earnings regression on the regressors included in the origi-

nal model but replace the education variable by its value estimated from the Step 1

regression.

We can replace this two-step procedure by a single step by invoking Stata’s ivreg

command by including several instruments simultaneously, as the following example

demonstrates.

For our earnings regression, in addition to mother’s education (Sm), we can include

father’s schooling (Sf), and the number of siblings as instruments in the regression of

earnings on education (S), gender (female = 1), years of work experience (wexp), eth-

nicity (dummies for black and Hispanics).

Step 1: Regress schooling (S) on all the original (nonstochastic) regressors and the

instruments. From this regression we obtain the estimated value of S, say, �s.

Step 2: We now regress earnings on gender, wexp, ethnic dummies, and �s, the latter

estimated from Step 1.

See Table 19.11. Compared to a single instrument in Table 19.7, when we introduced

multiple instruments, the coefficient of S (education) has gone up a bit, but it is still
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31 Why 10? The slightly technical answer for this can be found in James H. Stock and Mark W. Watson,

Introduction to Econometrics, 2nd edn, Pearson/Addison Wesley, Boston, 2007, p. 466. If the F statistic

exceeds 10, it suggests that the small sample bias of the IV estimate is less than 10% of the OLS bias.

Remember that in cases of stochastic regressor(s) OLS is biased in small as well as large samples.



significantly higher than the OLS regression. But notice again that the relative stan-

dard error of this coefficient is higher than its OLS counterpart, again reminding us

that IV estimators may be less efficient.

Testing the validity of surplus instruments

Earlier we stated that the number of instruments must be at least equal to the number

of stochastic regressor. So, technically for our earnings regression one instrument will

suffice, as in Table 19.7 where we used Sm (mother’s education) as an instrument. In

Table 19.11 we have three instruments, two more than the absolute minimum. How

do we know that they are valid in the sense they are correlated with education but are

not correlated with the error term? In simple terms, are they relevant?

Before we provide an answer to this question, it is worth mentioning the following:

1 If the number of instruments (I) equals the number of endogenous regressors, say

K, we say that the regression coefficients are exactly identified, that is, we can

obtain unique estimates of them.

2 If the number of instruments (I) exceeds the number of regressors, K, the regres-

sion coefficients are overidentified, in which case we may obtain more than one

estimate of one or more of the regressors.

3 If the number of instruments is less than the number of endogenous regressors,

the regression coefficients are underidentified, that is, we cannot obtain unique

values of the regression coefficients.32
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ivreg lEarnings female wexp ethblack ethhisp (S=sm sf siblings),robust
Instrumental variables (2SLS) regression Number of obs = 540
F( 5, 534) = 26.63
Prob > F = 0.0000
R-squared = 0.3492
Root MSE = .51071

Robust

lEarnings Coef. Std. Err. t P>|t| [95% Conf. Interval]

s .1579691 .0216708 7.29 0.000 .1153986 .2005396

female –.2976888 .0441663 –6.74 0.000 –.3844499 –.2109278

wexp .0372111 .005846 6.37 0.000 .0257271 .0486951

ethblack –.1627797 .0625499 –2.60 0.010 –.2856538 –.0399056

ethhisp –.0676639 .098886 –0.68 0.494 –.2619172 .1265893

_cons .1689836 .3621567 0.47 0.641 –.542443 .8804101

Instrumented: S
Instruments: female wexp ethblack ethhisp sm sf siblings

Table 19.11 Earnings function with several instruments.

32 The topic of identification is usually discussed in the context of simultaneous equation models. For

details, see Gujarati/Porter, op cit., Chapters 18, 19 and 20.



In the present example, if we use three instruments (Sm, Sf, siblings), we have two

extra or surplus instruments. How do we find out the validity of the extra instrument?

We can proceed as follows:33

1 Obtain the IV estimates of the earnings regression coefficients including all the

(exogenous) variables in the model plus all the instruments, three in the present

case.

2 Obtain residuals from this regression; call them Res.

3 Regress Res on all the original regressors, including the instruments, and obtain

the R2 value from this regression.

4 Multiply the R2 value obtained in Step 3 by the sample size (n = 540). That is,

obtain nR2 . If all the surplus instruments are valid, it can be shown thatnR m
2 2~ � ,

that isnR2 follows the chi-square distribution with m df, where m is the number of

surplus instruments; two in our case.

5 If the estimated chi-square value exceeds the critical chi-square value, say, the 5%

level, we conclude that at least one surplus instrument is not valid.

We have already given the IV estimates of the earnings regression including the

three instruments in Table 19.11. From this regression we obtained the following re-

gression as per Step 3 above. The results are given in Table 19.12.

We need not worry about the coefficients in this table. The important entity here is

R2, which is 0.0171. Multiplying this by the sample size of 540, we obtain nR2 = 9.234.

The chi-square 1% significance value for 2 df is about 9.21. So the computed

chi-square value is highly significant, which suggests that at least one surplus
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regress Res female wexp ethblack ethhisp sm sf siblings

Source SS df MS Number of obs = 540

F( 7, 532) = 1.32

Model 2.38452516 7 .340646452 Prob > F = 0.2366

Residual 136.894637 532 .257320746 R-squared = 0.0171

Adj R-squared = 0.0042

Total 139.279162 539 .258402898 Root MSE = .50727

Res Coef. Std. Err. t P>|t| [95% Conf. Interval]

female –.0067906 .0449329 –0.15 0.880 –.0950584 .0814771

wexp –.0001472 .0047783 –0.03 0.975 –.0095339 .0092396

ethblack –.0034204 .0708567 –0.05 0.962 –.1426136 .1357728

ethhisp –.0197119 .1048323 –0.19 0.851 –.225648 .1862241

sm –.0206955 .0110384 –1.87 0.061 –.0423797 .0009887

sf .0215956 .0082347 2.62 0.009 .0054191 .0377721

siblings .0178537 .0110478 1.62 0.107 –.0038489 .0395563

_cons –.0636028 .1585944 –0.40 0.689 –.3751508 .2479452

Table 19.12 Test of surplus instruments.

33 This discussion is based on R. Carter Hill, William E. Griffiths and Guay C. Lim, Principles of

Econometrics, 3rd edn, John Wiley & Sons, New York, 2008, pp. 289–90.



instrument is not valid. We could throw away two of the three instruments, as we need

just one to identify (i.e. estimate) the parameters. Of course, it is not a good idea to

throw away instruments. There are procedures in the literature to use weighted

least-squares to obtain consistent IV estimates. We leave the reader to discover more

about this in the references (see the Stock and Watson text for additional details).

19.12 Regression involving more than one endogenous
regressor

So far we have concentrated on a single endogenous regressor. How do we deal with a

situation of two or more stochastic regressors? Suppose in our earnings regression we

think that the regressor work experience (wexp) is also stochastic. Now we have two

stochastic regressors, education (S) and wexp. We can use 2SLS method to handle this

case.

Just as one instrument (Sm) sufficed to identify the impact of education on earn-

ings, we need another instrument for wexp. We have a variable, age, in our data. So we

can use it to proxy wexp. We can treat age as truly exogenous. To estimate the earnings

regression with two stochastic regressors, we proceed as follows:

Stage 1: We regress each endogenous regressor on all exogenous variables and

obtain the estimated values of these regressors.

Stage 2: We estimate the earnings function using all exogenous variables and the

estimated values of the endogenous regressors from Stage 1.

Actually, we do not have to go trough this two-stage procedure, for packages like

Stata can do this in one step. The results are given in Table 19.13.

This regression shows that the return to education per incremental year is about

13.4%, ceteris paribus. The regressors female and ethblack are individually highly sig-

nificant, as before, but the work experience variable is not statistically significant.
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. ivregress 2sls lEarnings female ethblack ethhisp (s wexp = sm age)
Instrumental variables (2SLS) regression Number of obs = 540
Wald chi2(5) = 139.51
Prob > chi2 = 0.0000
R-squared = 0.3440
Root MSE = .50987

lEarnings Coef. Std. Err. z P>|z| [95% Conf. Interval]

s .1338489 .0229647 5.83 0.000 .0888389 .1788589

wexp .0151816 .0158332 0.96 0.338 –.0158509 .0462141

female –.3378409 .0535152 –6.31 0.000 –.4427287 –.2329531

ethblack –.215774 .0787299 –2.74 0.006 –.3700818 –.0614663

ethhisp –.1252153 .1063871 –1.18 0.239 –.3337301 .0832995

_cons .8959276 .4964128 1.80 0.071 –.0770236 1.868879

Instrumented: s wexp
Instruments: female ethblack ethhisp sm age

Table 19.13 IV estimation with two endogenous regressors.



We have argued that IV estimation will give consistent estimates in case a regressor

has serious measurement errors, even though the estimates thus obtained are ineffi-

cient. But if measurement errors are absent OLS and IV estimates are both consistent,

in which case we should choose OLS because it is more efficient. Thus it behooves us

to find out if the instruments chosen for consideration are valid.

A test developed by Durbin, Wu and Hausman (DWH), but popularly known as the

Hausman test, is one that is used in applied econometrics to test the validity of instru-

ments.34

Although the mathematics of the test is involved, the basic idea behind the DWH

test is quite simple. We compare the differences between OLS and IV coefficients of all

the variables in the model, and obtain, say,m b b� �( )OLS IV . Under the null hypothesis

that m = 0, it can be shown that m is distributed as the chi-square distribution with de-

grees of freedom equal to the number of coefficients compared. If m turns out to be

zero, it would suggest that the (stochastic) regressor is not correlated with the error

term and we can use OLS in lieu of IV, because OLS estimators are more efficient.

The results of the DWH test based on Stata are given in Table 19.14. In this table

the column (b) gives the estimates of the model under IV (earniv) and column (B) gives

the estimates obtained by OLS (earnols). The next column gives the difference be-

tween the two sets of coefficients (m) and the last column gives the standard error of

the difference between the two estimates.
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hausman earniv earnols1, constant

Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))

earniv earnols Difference S.E.

educ .1431384 .1082223 .0349161 .0273283

female –.2833126 –.2701109 –.0132017 .0121462

wexp .0349416 .029851 .0050906 .0040397

ethblack –.1279853 –.1165788 –.0114065 .0138142

ethhisp –.0506336 –.0516381 .0010045 .0141161

asvab02 .0044979 .0093281 –.0048302 .0037962

_cons .1715716 .483885 –.3123135 .2454617

b = consistent under Ho and Ha; obtained from ivreg
B = inconsistent under Ha, efficient under Ho; obtained from regress
Test: Ho: difference in coefficients not systematic
chi2(7) = (b–B)’[(V_b–V_B)^(–1)](b–B)
= 1.63
Prob>chi2 = 0.9774

Table 19.14 The DWH test of instrument validity for the earnings function.

34 See Jerry Hausman, Specification tests in econometrics, Econometrica, vol. 46, no. 6, 1978, pp.

1251–71; James Durbin, Errors in variables, Review of the International Statistical Institute, vol. 22, no. 1,

1954, pp. 23–32, and Wu, De-Min, Alternative tests of independence between stochastic regressors and

disturbances, Econometrica, vol. 41, no. 4, 1073, 733–50. See also A. Nakamura and M. Nakamura, On the

relationship among several specification error tests presented by Durbin, Wu, and Hausman, Econometrica,

vol. 49, November 1981, pp. 1583–8.



We do not reject the null hypothesis that the OLS and IV estimates are statistically

the same, for the probability of obtaining a chi-square value of 1.63 or greater is about

98%. In this case we should choose the OLS estimators, as they are more efficient than

the IV estimators.

Although we have not considered all the data given in Table 19.2, based on the

model considered here, it seems that the education variable (S) is probably not corre-

lated with the error term. But the reader is advised to try other models from the data

given in Table 19.2 to see if they arrive at a different conclusion.

19.13 Summary and conclusions

One of the critical assumptions of the classical linear regression model is that the error

term and regressor(s) are uncorrelated. But if they are correlated, then we call such

regressor(s) stochastic or endogenous regressors. In this situation the OLS estimators

are biased and the bias does not disappear even if the sample size increases indefi-

nitely. In other words, the OLS estimators are not even consistent. As a result, tests of

significance and hypothesis testing become suspect.

If we can find proxy variables such that they are uncorrelated with the error term,

but are correlated with the stochastic regressors and are not candidates in their own

right in the regression model, we can obtain consistent estimates of the coefficients of

the suspected stochastic regressors. Such variables, if available, are called instrumental

variables, or instruments for short.

In large samples IV estimators are normally distributed with mean equal to the true

population value of the regressor under stress and the variance that involves the popu-

lation correlation coefficient of the instrument with the suspect stochastic regressor.

But in small, or finite, samples, IV estimators are biased and their variances are less ef-

ficient than the OLS estimators.

The success of IV depends on how strong they are – that is, how strongly they are

correlated with the stochastic regressor. If this correlation is high, we say such IVs are

strong, but if it is low, we call them weak instruments. If the instruments are weak, IV

estimators may not be normally distributed even in large samples.

Finding “good” instruments is not easy. It requires intuition, introspection, famil-

iarity with prior empirical work, or sometimes just luck. That is why it is important to

test explicitly whether the chosen instrument is weak or strong, using tests like the

Hausman test.

We need one instrument per stochastic regressor. But if we have more than one in-

strument for a stochastic regressor, we have a surfeit of instruments and we need to

test their validity. Validity here means whether the surfeit instruments have high cor-

relation with the regressor but are uncorrelated with the error term. Fortunately, sev-

eral tests are available to test for this.

If there is more than one stochastic regressor in a model, we will have to find an in-

strument(s) for each stochastic regressor. Again, we need to test the instruments for

their validity.

One practical reason why IVs have become popular is that we have excellent statis-

tical packages, such as Stata and Eviews, which make the task of estimating IV regres-

sion models very easy.

The topic of IV is still evolving and considerable research is being done on it by vari-

ous academics. It pays to visit their websites to learn more about the recent
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developments in the field. Of course, the Internet is a source of information on IV and

other statistical techniques.

Exercises

19.1 Prove that � �x X xi i i/ 2 1� , where x X Xi i� � .

19.2 Verify Eq. (19.11).

19.3 Verify Eq. (19.12).

19.4 Verify Eq. (19.29).

19.5 Return to the wage regression discussed in the text. Empirical evidence shows

that the wage–work experience (wexp) profile is concave – wages increase with work

experience, but at a diminishing rate. To see if this is the case, one can add the wexp2

variable to the wage function (19.39). If wexp is treated as exogenous, so is wexp2. Esti-

mate the revised wage function by OLS and IV and compare your results with those

shown in the text.

19.6 Continue with the wage function discussed in the text. The raw data contains in-

formation on several variables besides those included in Eq. (19.39). For example,

there is information on marital status (single, married, and divorced), ASVAB scores

on arithmetic reasoning and word knowledge, faith (none, Catholic, Jewish,

Protestant, other), physical characteristics (height and weight), category of employ-

ment (Government, private sector, self-employed) and region of the country (North

central, North eastern, Southern, and Western). If you want to take into account some

of these variables in the wage function, estimate your model, paying due attention to

the problem of endogeneity. Show the necessary calculations.

19.7 In his article, “Instrumental-Variable Estimation of Count Data Models: Appli-

cations to Models of Cigarette Smoking Behavior”, Review of Economics and Statistics

(1997, pp. 586–93), John Mullahy wanted to find out if a mother’s smoking during

pregnancy adversely affected her baby’s birth weight. To answer this question he con-

sidered several variables, such as natural log of birth weight, gender (1 if the baby is

male), parity (number of children the woman has borne), the number of cigarettes the

mother smoked during pregnancy, family income, father’s education, and mother’s

education.

The raw data can be found on the website of Michael Murray

(http://www.aw-bc.com/murray/). Download this data set and develop your own

model of the effect of mother’s smoking during pregnancy on the baby’s birth weight

and compare your results with those of John Mullahy. State your reasons why you

think that a standard logit or probit model is sufficient without resorting to IV

estimation.

19.8 Consider the model given in Equations (19.35) and (19.36). Obtain data on the

crime rate, law enforcement spending and Gini coefficient for any country of your

choice, or for a group of countries, or for a group of states within a country, and esti-

mate the two equations by OLS. How would you use IV to obtain consistent estimates

of the parameters of the two models? Show the necessary calculations.

19.9 Consider the following model:
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Y B B X ut t t� � �1 2 (1)

where Y = monthly changes in the AAA bond rate, X = monthly change in the three

month Treasury bill rate (TB3), and u = stochastic error term. Obtain monthly data on

these variables from any reliable source (e.g. the Federal Reserve Bank of St. Louis) for

the past 30 years.

(a) Estimate Eq. (1) by OLS. Show the necessary output.

(b) Since general economic conditions affect changes in both AAA and TB3, we

cannot treat TB3 as purely exogenous. These general economic factors may

very well be hidden in the error term, ut. So TB3 and the error term are likely

to be correlated. How would you use IV estimation to obtain an IV estimator

of B2? Which IV would you use to instrument TB3?

(c) Using the instrument you have chosen, obtain the IV estimate of B2 and

compare this estimate with the OLS estimate of B2 obtained in (a).

(d) Someone suggests to you that you can use past changes in TB3 as an instru-

ment for current TB3. What may be the logic behind this suggestion? Sup-

pose you use TB3 lagged one month as the instrument. Using this

instrument, estimate Eq. (1) above and comment on the results.
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Appendix 1
Data sets used in the text

Entries headed Table are available either on the companion website or are included in

the text. Entries headed Section describe data downloadable from third parties.

Table 1.1 Wages and related data.

W (Wage): Hourly wage in dollars, which is the dependent variable.

The explanatory variables, or regressors, are as follows:

FE (Female): Gender, coded 1 for female, 0 for male

NW (Nonwhite): Race, coded 1 for nonwhite workers, 0 for white workers

UN (Union): Union status, coded 1 if in a union job, 0 otherwise

ED (Education): Education (in years)

EX (Exper): Potential work experience (in years), defined as age minus years of

schooling minus 6. (It is assumed that schooling starts at age 6).

Age: Age in years

Wind: Coded 1 if not paid by the hour

Table 2.1 Production data for the USA, 2005.

Q (Output): Value added, thousands of dollars

L (Labor input): Work hours in thousands

Q (Capital input): Capital expenditure in thousands of dollars

Table 2.5 Data on Real GDP, USA, 1960–2007.

RGDP = Real GDP

Table 2.8 Food expenditure and total expenditure for 869 US households in 1995.

SFDHO = Share of food expenditure on total expenditure

EXPEND = Total expenditure

Table 2.15

GDP-cap = Per worker GDP (1997)

Index = Corruption index (1998)

Table 3.6 Gross private investment and gross private savings, USA, 1959–2007.

GPI = Gross Private Investment, billions of dollars

GPS = Gross Private Savings, billions of dollars

Table 3.10 Quarterly retail fashion sales, 1986-I–1992-IV.

Sales = Real sales per thousand square feet of retail space

Table 3.16 Effects of ban and sugar consumption on diabetes.

Diabetes = Diabetes prevalence in a country

350



Ban = 1 is some type of ban on genetically modified goods is present, 0 otherwise

Sugar Sweet Cap = Domestic supply of sugar and sweetener per capita, in kg.

Table 4.2 Mroz data on married women’s hours of work: data from Stata.

Hours: hours worked in 1975 (dependent variable)

Kidslt6: number of kids under age 6

Kidsge6: number of kids between ages 6–18

Age: woman’s age in years

Educ: years of schooling

Wage: estimated wage from earnings

Hushrs: hours worked by husband

Husage: husband’s age

Huseduc: husband’s years of schooling

Huswage: husband’s hourly wage, 1975

Faminc: family income in 1975

Mtr: federal marginal tax rate facing a woman

motheduc: mother’s years of schooling

fatheduc: father’s years of schooling

Unem: unemployment rate in county of residence

exper: actual labor market experience

Table 4.9 Manpower needs for operating a US Navy bachelor officers’ quarters in

25 establishments

Y: Monthly manhours needed to operate an establishment

X1: Average daily occupancy

X2: Monthly average number of check-ins

X3: Weekly hours of service desk operation

X4: Common use area (in square feet)

X5: Number of building wings

X6: Operational berthing capacity

X7: Number of rooms

Table 5.1 Data on abortion rates in the 50 States of the USA, 1992.

State = name of the state (50 US states)

ABR = Abortion rate, number of abortions per thousand women aged 15–44 in

1992

Religion = the percentage of a state’s population that is Catholic, Southern Bap-

tist, Evangelist or Mormon

Price = the average price charged in 1993 in non-hospital facilities for an abor-

tion at 10 weeks with local anesthesia (weighted by the number of abortions

performed in 1992)

Laws = a variable that takes the value of 1 if a state enforces a law that restricts a

minor’s access to abortion, 0 otherwise

Funds = a variable that takes the value of 1 if state funds are available for use to

pay for an abortion under most circumstances, 0 otherwise

Educ = the percentage of a state’s population that is 25 years or older with a high

school degree (or equivalent), 1990

Income = disposable income per capita, 1992
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Picket = the percentage of respondents that reported experiencing picketing with

physical contact or blocking of patients

Table 6.1 US consumption function, 1947–2000.

C =consumption expenditure

DPI = real disposable personal income

W = real wealth

R = real interest rate

Table 7.8 Data on cigarette smoking and deaths from various types of cancer in 43

US states and Washington, DC, 1960

Cig = Number of cigarettes smoked per capita (in hundreds)

Deaths = number of deaths from bladder, lung, kidney and leukemia

Table 7.11

PCE = Personal Consumption Expenditure, $ billions

GDPI = Gross Domestic Private Investment, $ billions

Income = Income, $ billions

Table 8.1 Data on smoking and other variables.

Smoker = 1 for smokers and 0 for non-smokers.

Age = age in years

Education = number of years of schooling

Income = family income

Pcigs = price of cigarettes in individual states in 1979

Table 8.7 Number of coupons redeemed and the price discount.

Discount = Price discount in cents.

Sample size = Number of discount coupons issued, 500 in each case

Redeemed = Number of coupons redeemed.

Table 8.8 Fixed vs. adjustable rate mortgages.

Adjust = 1 if an adjustable mortgage is chosen, 0 otherwise

Fixed rate = fixed interest rate

Margin = (variable rate – fixed rate)

Yield = the 10-year Treasury rate less 1-year rate

Points = ratio of points on adjustable mortgage to those paid on a fixed rate

mortgage

Networth = borrower’s net worth

Table 9.1 Data on school choice.

Y = school choice, no college, a 2-year college or a 4-year college

X2 = hscath = 1 if Catholic school graduate, 0 otherwise

X3 = grades = average grade in math, English and social studies on a 13 point

grading scale, with 1 for the highest grade and 13 for the lowest grade. There-

fore, higher grade-point denotes poor academic performance

X4 = faminc = gross family income in 1991 in thousands of dollars

X5 = famsiz =number of family members

X6 = parcoll = 1 if the most educated parent graduated from college or had an

advanced degree

X7 = female = 1 if female
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X8 = black = 1 if black

Table 9.3 Raw data for mode of travel.

Mode = Choice: air, train, bus or car

Time = Terminal waiting time, 0 for car

Invc = In-vehicle cost–cost component

Invt = Travel time in vehicle

GC = Generalized cost measure

Hinc = Household income

Psize = Party size in mode chosen

Section 10.3 Attitudes toward working mothers: load data from

http://www.stata-press.com/data/lf2/ordwarm2.dta.

response = 1 (strongly disagree)

= 2 (disagree)

= 3 (agree)

= 4 strongly agree

yr89 = survey year 1989

gender = 1 for male

race = 1 if white

age = age in years

ed = years of education

prst = occupational prestige

Section 10.4 OLM estimation of application to graduate school: download from

http://www.ats.ucla.edu/stat/stata/dae/ologit.dta.

Intention to go to graduate school = 1 (unlikely), 2 (somewhat likely) or 3 (very

likely)

pared = 1 if at least one parent has graduate education

public = 1 if the undergraduate institution is a public university

GPA = student’s grade point average

Table 10.7 Mental impairment and related data.

Mental health = well, mild symptom formation, moderate symptom formation,

and impaired

SES = socio-economic status

Events = index of life events

Table 11.1 Married women’s hours of work and related data.

See Table 4.2.

Table 12.1 Data on patents and R&D expenditure for 181 firms.

P91 = number of patents granted in 1991

P90 = number of patents granted in 1990

LR91 = log of R&D expenditure in 1991

LR90 = log of R&D expenditure in 1990

Industry dummy = 5 dummies for 6 industries

Country dummy = 1 for US and 0 for Japan

R&D = R&D expenditure
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Table 12.8 Ray Fair: extramarital affairs.

obs = observation number

affair = 1 if had at least one affair

naffair = number of affairs

male = 1 if male, 0 if female

age = age in years

yrsmarr = number of year married

kids = number of kids

education = years of schooling

relig = religiousness: 1 = anti-religion, 2 = not at all, 3 = slightly, 4 = somewhat, 5

= very religious

ratemarr = self-rating of marriage: 1 = very unhappy, 2 = somewhat unhappy, 3 =

average, 4 = happier than average, 5 = very happy

Table 13.1 Daily data on euro/dollar exchange rates, 2000–2008.

LEX = Daily data on euro/dollar exchange rates

Table 13.6 Daily closing prices of IBM stock January 2000 to August 2002.

LCLOSE = logarithm of daily closing price of IBM

Table 14.1 PCE and DPI, USA, quarterly, 1970–2008.

PDI = personal disposable income

PCE = personal consumption expenditure

Table 14.8 Monthly 3-month and 6-month Treasury Bill rates, January 1981 to

January 2010.

TB3 = Three-month Treasury Bill rate

TB6 = Six-month Treasury Bill rate

Table 16.1 Real per capita PCE and PDI, USA, 1960–2008.

PCE = Per capita personal consumption expenditure

PDI = Per capita personal disposable income

Table 17.1 Charitable giving.

Charity: The sum of cash and other property contributions, excluding

carry-overs from previous years

Income: Adjusted gross income

Price: One minus the marginal income tax rate; marginal tax rate is defined on

income prior to contributions

Age: A dummy variable equal to 1 if the taxpayer is over 64, and 0 otherwise

MS: A dummy variable equal to 1 if the taxpayer is married, 0 otherwise

DEPS: Number of dependents claimed on the tax return

Table 18.1 Modeling recidivism.

1. black = 1 if black

2. alcohol = 1 if alcohol problems

3. drugs = 1 if drug history

4. super = 1 if release supervised

5. married = 1 if married when incarc.

6. felon = 1 if felony sentence

7. workprg = 1 if in N.C. pris. work prg.
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8. property = 1 if property crime

9. person = 1 if crime against person

10. priors = # prior convictions

11. educ = years of schooling

12. rules = # rules violations in prison

13. age in months

14. tserved = time served, rounded to months

15. follow length = follow period, months

16. durat = max(time until return, follow)

17. cens = 1 if duration right censored

18. ldurat = log(durat)

Table 19.1 Data on crime rate and expenditure on police, USA, 1992.

Crime rate = number of crimes per 100,000 population

Expenditure = police expenditure in dollars

Section 19.7 Earnings and educational attainment of 540 youths in USA.

ln Earn = log of hourly earnings in $

S = years of schooling (highest grade completed in 2002)

Wexp = total out-of school work experience in years as of the 2002 interview

Gender = 1 for female and 0 for men

Ethblack = 1 for blacks

Ethhis = 1 for Hispanic; non-black and non-Hispanic being the left-out, or refer-

ence, category
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Appendix 2
Statistical appendix

This appendix serves as a primer in basic statistical theory and should not substitute

for a comprehensive background in statistics. The basic tools covered here are needed

to understand the econometric theory described in the book. A brief overview of prob-

ability, random variables, probability distributions and their characteristics, and sta-

tistical inference are given. Four distributions will be mentioned that are particularly

useful in econometrics: (1) the normal distribution; (2) the t distribution; (3) the

chi-square (�2 ) distribution; and (4) the F distribution.

A.1 Summation notation

Several mathematical expressions are more practically expressed in shorthand, as with

the Greek capital letter sigma (�) used for summation as such:

X X X X Xi n

i

n

� � � � �
�
	 1 2 3

1

�

The expression �i
n

iX�1 means to take the sum of the variable X from 1 (the first

value) to n (the last value).1 Identical forms of this expression include

Xi
i

n

�
	

1

, Xi	 and X
x
	 .

Properties of �

1 k nk
i

n

�
	 �

1

, where k is a constant.

For example, 2 4 2 8
1

4

i�
	 � �( )( )

2 kX k Xi
i

n

i
i

n

� �
	 	�

1 1
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For example, 2 2 2 2 2
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i i
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where Xi and Yi are variables.

For example, ( )X Y X Y X X Y Yi i
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where a and b are constants.

For example, ( ) ( )( ) ( )4 5 3 4 5 12 5 5 5
1
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A.2 Experiments

Key concepts

� A statistical or random experiment refers to any process of observation or mea-

surement that has more than one possible outcome and for which there is uncer-

tainty about which outcome will materialize.

� The set of all possible outcomes of an experiment is referred to as the population or

sample space.

� An event is a particular collection of outcomes and is a subset of the sample space.

Events are mutually exclusive if the occurrence of one event prevents the simulta-

neous occurrence of another event. Two events are equally likely if the probabilities

of their occurrences are the same. Events are collectively exhaustive if they exhaust

all possible outcomes of an experiment.

� A variable whose numerical value is determined by the outcome of an experiment is

called a random, or stochastic, variable. Random variables are generally denoted

by capital letters (such as X, Y and Z), and the values taken by these variables are

typically denoted by small letters (such as x, y and z). A discrete random variable

takes a finite number of values or an infinite number of values pertaining to whole

numbers. A continuous random variable takes any value in some interval of

values.

� The probability that an event A occurs, if an experiment results in n mutually ex-

clusive and equally likely outcomes and if m of these outcomes are favorable to A, is

m/n. That is, P(A) = m/n = (number of outcomes favorable to A)/(total number of

outcomes). Note that this classical definition of probability is not valid if the out-

comes of an experiment are not finite or not equally likely.

These concepts will be clarified with a coin toss example.

Coin toss example
Two fair coins are tossed. Let H denote a head and T denote a tail. The possible out-

comes are two heads, two tails, one head and one tail, or one tail and one head, where

each of these four outcomes is an event. In other words, the sample space is S = {HH,
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HT, TH, TT}. Since it is not possible to, say, toss both HH and HT, the events are con-

sidered mutually exclusive. The probability of each event occurring is 1
4
. The four

events are therefore equally likely. Since the four probabilities add up to 100%, or 1, the

events in the sample space are collectively exhaustive.

A.3 Empirical definition of probability

Table A.1 gives information on the distribution of ages for ten children in an

orphanage.

This table is more concisely presented as shown in Table A.2. Note that in this table,

the tabulated frequencies for a given age are combined.

A frequency distribution, as shown in Tables A.1 and A.2, shows how the random

variable age is distributed. The second column shows the absolute frequency, the

number of occurrences for a given event. The numbers in this column must add up to

the total number of occurrences (10 in the present case). The relative frequency,

shown in the third column, is equal to the absolute frequency divided by the total

number of occurrences. The numbers in this column must add up to 1, as shown in the

table.

The empirical, or relative frequency, definition of probability, involves approxi-

mating probabilities using relative frequencies, provided the number of observations
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Age Absolute frequency Relative frequency

5 1 1/10

7 1 1/10

7 1 1/10

7 1 1/10

8 1 1/10

8 1 1/10

8 1 1/10

8 1 1/10

9 1 1/10

10 1 1/10

� = 1

Table A.1 Distribution of ages for ten children.

Age Absolute frequency Relative frequency

5 1 1/10

7 3 3/10

8 4 4/10

9 1 1/10

10 1 1/10

� = 1

Table A.2 Distribution of ages for ten children (concise).



used in calculating the relative frequencies is reasonably large. Thus, for n observa-

tions, if m are favorable to event A, then P(A), the probability of event A, is the ratio

m/n, provided n is reasonably large. Unlike the classical definition, the outcomes do

not have to be mutually exclusive and equally likely.

A.4 Probabilities: properties, rules, and definitions

1 0 1� �P A( )

2 P A B C P A P B P C( ) ( ) ( ) ( )� � � � � � �� �

if A, B, C,� are mutually exclusive events.

3 P(A + B + C +�) �P(A) + P(B) + P(C) +��1

if A, B, C,� are mutually exclusive and collectively exhaustive events.

4 P(ABC�) �P(A)P(B)P(C),�,

if A, B, C,� are statistically independent events, meaning that the probability of

their occurring together is equal to the product of their individual probabilities.2

P(ABC�) is referred to as a joint probability.

5 P(A + B) �P(A) + P(B) – P(AB),

if A and B are not mutually exclusive events.

6 The complement of A, *A , is defined as:

P(A + *A ) = 1 and P(A *A ) = 0

7 P(A | B) = P(AB)/P(B); P(B) > 0,

where P(A | B) is referred to as a conditional probability.

An application of conditional probability is provided by Bayes’ Theorem, which

states:

P A B
P B A P A

P B A P A P B A P A
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
�

� * *

A.5 Probability distributions of random variables

Discrete random variables

The number of values of a discrete random variable is finite or countably infinite. Let

the function f, the probability mass function (PMF), be defined by:

P X x f xi i( ) ( )� � , i = 1, 2,�

Note that

0 1

1

� �

�	
f x

f x

i

i
x

( )

( )
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Continuous random variables

The number of values of a continuous random variable is infinite and defined over an

interval or range. Let the function, f, the probability density function (PDF), be

defined by:

P x X x f x x

x

x

( ) ( )1 2

1

2

� � � ( d

where x1 < x2 and Ú is the integral symbol of calculus, equivalent to the summation

symbol � but used for a continuous random variable in lieu of a discrete random

variable.

Note that

f x x( )d

��

�

( �1

The cumulative distribution function (CDF), denoted by a capital F(x), is associ-

ated with the PMF or PDF of a random variable as follows:

F(x) = P(X � x),

where P(X � x) is the probability that a random variable X takes a value less than or

equal to x. (Note that for a continuous random variable, the probability that a random

variable takes the exact value of x is zero.)

Properties of CDF

1 F(–�) = 0 and F(�) = 1, where F(–�) and F(�) are the limits of F(x) as x tends to –�
and �, respectively.

2 F(x) is nondecreasing such that if x2 > x1, then F(x2) �F(x1).

3 P(X � k) = 1 – F(k), where k is a constant.

4 P(x1 �X � x2) = F(x2) – F(x1).

Multivariate probability density functions

Thus far, we have been dealing with single variable (univariate) probability density

functions, since we have been dealing with one variable, X. Now we will introduce Y

and give an example of the simplest multivariate PDF, a bivariate PDF. Table A.3 gives

information on two random variables, average wage (X) and the number of DVDs

owned (Y), for 200 individuals. The numbers shown in this table are absolute

frequencies.

The relative frequencies for the values provided in Table A.3 are given in Table A.4.

Note that all the probabilities within the table, called joint probabilities, or f(X,Y),

must add up to 1, or 100%.

Note the following:

1 f(X,Y) �0 for all X and Y.

2 As noted above, f X Y
yx

( , ) �		 1.
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3 Marginal probabilities in Table A.4 are denoted by f(X) and f(Y). That is, the prob-

ability that X assumes a given value regardless of the values taken by Y is called the

marginal probability of X, and the distribution of these probabilities is the mar-

ginal PDF of X. Therefore:

f X f X Y
y

( ) ( , )�	 for all X

and

f Y f X Y
x

( ) ( , )�	 for all Y.

4 Conditional probability refers to the probability that one random variable as-

sumes a particular value, given that the other random variable has assumed a par-

ticular value. It is equal to the joint probability divided by the marginal probability.

In shorthand:

f Y X
f X Y

f X
( | )

( , )

( )
� and f X Y

f X Y

f Y
( | )

( , )

( )
�

For example, in Table A.4, the probability that the number of DVDs owned is

equal to 50 given that average wage is $20 is expressed as:3

f Y X
f X Y

f X
( | )

( , )

( )

.

.
.� � �

� �

�
� �50 20

20 50

20

020

035
05714
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X = Wage

$10 $15 $20 f(Y)

Y = Number of DVDs owned 0 20 10 10 40

25 60 20 20 100

50 0 20 40 60

f(X) 80 50 70 200

Table A.3 Frequency distribution of two random variables.

X = Wage

$10 $15 $20 f(Y)

Y = Number of DVDs owned 0 0.10 0.05 0.05 0.20

25 0.30 0.10 0.10 0.50

50 0.00 0.10 0.20 0.30

f(X) 0.40 0.25 0.35 1.0

Table A.4 Relative frequency distribution of two random variables.

3 Note that this conditional probability of 57% is higher than the unconditional probability of having 50

DVDs, P(Y = 50), of 30%, which is expected since we would expect people with higher wages to own more

DVDs. As we will see shortly, this means that X and Y in this case are not statistically independent.



5 Two random variables X and Y are said to be statistically independent if and only

if their joint PDF can be expressed as the product of their marginal PDFs for all

combinations of X and Y values. In other words:

f X Y f X f Y( , ) ( ) ( )� for all X and Y.

We can see that in the example above, wage (X) and number of DVDs owned (Y)

are not statistically independent.

A.6 Expected value and variance

The expected value of a random variable, also called the first moment of the probabil-

ity distribution, is the weighted average of its possible values, or the sum of products of

the values taken by the random variable and their corresponding probabilities. It is

also referred to as the population mean value, and is expressed as:

E X Xf Xx( ) ( )� �� �

Using the values in Table A.2, the average age in the orphanage is:

� x

X

xf X� � � � � �	 ( ) ( . ) ( . ) ( . ) ( . ) ( .5 010 7 030 8 0 40 9 010 10 010) .�77

Using the values in Table A.4, the average wage for the 200 individuals is:

� x

X

xf X� � � � �	 ( ) ( . ) ( . ) ( . ) .10 0 40 15 025 20 035 1475

The average number of DVDs for the 200 individuals is:

� y

Y

yf Y� � � � �	 ( ) ( )( . ) ( )( . ) ( )( . ) . .0 020 25 050 50 030 275

Note that a simple average is a special case of the more general form above, in which

the weights or probabilities f(X) are equal for all values of X.

Properties of expected value

1 E(a) = a, where a is a constant.

2 E(X + Y) = E(X) + E(Y)

3 E(X/Y) � E(X)/E(Y)

4 E(XY) �E(X)E(Y), unless X and Y are statistically independent random variables.4

5 E(X2) � [E(X)]2

6 E(bX) = bE(X), where b is a constant.

7 E(aX + b) = aE(X) + E(b) = aE(X) + b

Thus E is a linear operator.
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4 Careful: if X and Y are statistically independent, then E(XY) = E(X)E(Y). Yet it does not follow that if

E(XY) = E(X)E(Y), then X and Y are statistically independent. You would still need to check that f(X,Y) =

f(X)f(Y) for all values of X and Y.



The expected value of two random variables in a bivariate PDF is expressed as:

E XY XY f X Yxy

yx

( ) ( , )� � 		�

Using the values in Table A.4, the expected value of wage and DVDs for the 200 in-

dividuals is:

� xy

yx

XY f X Y�

� � �

		 ( , )

( )( )( . ) ( )( )( . ) ( )10 0 010 10 25 030 10 ( )( . )

( )( )( . ) ( )( )( . ) ( )( )(

50 0 00

15 0 0 05 15 25 010 15 50 0� � � . )

( )( )( . ) ( )( )( . ) ( )( )( . )

10

20 0 0 05 20 25 010 20 50 020 4� � � � 375.

A conditional expected value (as opposed to the unconditional one outlined

above) is an expected value of one variable conditional on the other variable taking on

a particular value, and is defined using conditional probability as:

E X Y xf X Y
X

( | ) ( | )�	

Using the values in Table A.4, the expected value of wage given that the number of

DVDs is 50 is:

E X Y xf X Y x
f X Y

f YX X

( | ) ( | )
( , )

( )

( )
.

� � � �
�

�

�

	 	50 50
50
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10
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.
( )

.

.
( )

.

.
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!
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Imagine a sample is picked at random from the population we have been consider-

ing so far. The sample mean is defined as:

X
X

n

i

i

n

�
�
	

1

Note that this is a simple mean as each observation is given the same probability, equal

to 1/n. The sample mean is known as an estimator of E(X). An estimator is a rule or

formula that tells us how to go about estimating a population quantity.

The variance of a random variable, also called the second moment of the probabil-

ity distribution, is a measure of dispersion around the mean, expressed as follows:

var( ) ( ) ( ) ( )X E X X f Xx x x� � � � � �
 � �2 2 2�

Using the values in Table A.2, the variance of age in the orphanage is:


 �x
X

xX f X2 2 2 25 77 010 7 77 030

8

� � � � � �

�

	 ( ) ( ) ( . ) ( . ) ( . ) ( . )

( � � � � � �77 0 40 9 77 010 10 77 010 1612 2 2. ) ( . ) ( . ) ( . ) ( . ) ( . ) .

Using the values in Table A.4, the variance of wage for the 200 individuals is:


 �x
X

xX f X2 2

2

10 1475 0 40

15 1475 02

� � � �

� �

	 ( ) ( ) ( . ) ( . )

( . ) ( . 5 20 1475 035 18 6882) ( . ) ( . ) .� � �
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Properties of variance

1 var(k) = 0, where k is a constant.

2 var(X + Y) = var(X) + var(Y), and var(X – Y) = var(X) + var(Y),

where X and Y are statistically independent random variables.

3 var(X + b) = var(X), where b is a constant.

4 var(aX) = a2var(X), where a is a constant.

5 var(aX + b) = a2var(X), where a and b are constants.

6 var(aX + bY) = a2var(X) + b2var(Y),

where X and Y are statistically independent random variables, and a and b are

constants.

7 var(X) = E(X2) – [E(X)]2, where E(X2) = X f X
X

2	 ( ).

The standard deviation of a random variable, 
x , is equal to the square root of the

variance. Using the values in Table A.2, the standard deviation of age in the orphanage

is:


 
x x� � �2 161 1269. .

The sample variance is an estimator of the population variance, 
x
2 , and is ex-

pressed as:

S
X X

n
x

i

i

n
2

2

1 1
�

�

��
	

( )

The denominator of the sample variance represents the degrees of freedom, equal

to (n – 1) since we lose one degree of freedom through calculating the sample mean

using the same sample.

The sample standard deviation of a random variable, Sx, is equal to the square root

of the sample variance.

A.7 Covariance and correlation coefficient

The covariance is a measure of how two variables vary or move together in a

multivariate PDF and is expressed as:

cov( , ) [( )( )] ( )( ) ( ,X Y E X Y X Y f X Yxy x y

yx

x y� � � � � � �		
 � � � � )

Alternatively, we can write:

cov( , ) ( ) ( , )X Y E XY XY f X Yxy x y

yx

x y� � � � �		
 � � � �

Using the values in Table A.4, the covariance between wage for the 200 individuals

(X) and number of DVDs owned (Y) is:


 � �xy

yx

x yXY f X Y� � � � �		 ( , ) ( . ) ( . )( . ) .4375 1475 275 31875
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Properties of covariance

1 E(XY) = E(X)E(Y) = � �x y = 0,

if X and Y are statistically independent random variables.

2 cov(a + bX, c + dY) = bd cov(X,Y), where a, b, c and d are constants.

3 cov(X,X) = var(X)

4 var(X + Y) = var(X) + var(Y) + 2 cov(X,Y)

and

var(X – Y) = var(X) + var(Y) – 2 cov(X,Y)

Since the covariance is unbounded [ ]�� � � �
xy , a more useful measure in show-

ing the relationship between two variables is the correlation coefficient, which takes a

value between –1 and 1 and is expressed as:

�

 


�
cov( , )X Y

x y

Properties of correlation coefficient

1 The correlation coefficient always has the same sign as the covariance.

2 The correlation coefficient is a measure of linear relationship between two

variables.

3 � � �1 1�

4 The correlation coefficient is a pure number, devoid of any units.

5 If two variables are statistically independent, then their covariance and in turn

their correlation coefficient is zero. However, if the correlation coefficient be-

tween two variables is zero, that does not necessarily mean that the two variables

are statistically independent.

6 Correlation does not necessarily imply causality.

The sample covariance is an estimator of the population covariance, 
xy , and is ex-

pressed as:

S
X X Y Y

n
xy

i i�
� �

�

�[( )( )]

1

Similarly, the sample correlation coefficient is an estimator of the population cor-

relation coefficient, �, and is expressed as:

r
S

S S

xy

x y
�

A.8 Normal distribution

The most important probability distribution is the bell-shaped normal distribution.

A normally distributed random variable is expressed as:
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X N x x~ ( , )� 
2

with a PDF distributed as:

f x
X

x

x

x
( ) exp

(
� �

��

 
!

"

#
$

1

2

1

2

2


 �

�




Properties of the normal distribution:

1 The normal distribution curve is symmetrical around its mean value � x .

2 The PDF of a normally distributed random variable is highest at its mean value

and tails off at its extremities.

3 Approximately 68% of the area under the normal curve lies between the values of

( )� 
x x ; approximately 95% of the area lies between ( )� 
x x2 ; and approxi-

mately 99.7% of the area lies between ( )� 
x x3 . The total area under the curve is

100%, or 1.

4 A normal distribution is fully described by its two parameters, � x and 
x . Once

the values of these two parameters are known, it is possible to calculate the proba-

bility of X lying within a certain interval from the PDF of the normal distribution

given above (or through using tables provided in a standard statistics textbook).

5 A linear combination of two normally distributed random variables is itself nor-

mally distributed.

If X N x x~ ( , )� 
2 and Y N y y~ ( , )� 
2 , and if W = aX + bY, then

W N a b a b abx y x y xy~ ( , )� � 
 
 
� � �2 2 2 2 2

It is often useful to standardize variables that are normally distributed for ease of

comparison. The variable X is standardized by using the following transformation:

Z
X x

x
�

��




The resulting variable is normally distributed with a mean of zero and a variance of 1:

Z ~ N(0, 1)

The Central Limit Theorem (CLT) states that if X1, X2, X3, ..., Xn is a random

sample drawn from any population (not necessarily a normally distributed one) with

mean � x and variance 
x
2 , the sample mean X tends to be normally distributed with

mean � x and variance 
x n2 / as the sample size increases indefinitely. That is,

X N
n

x
x~ ,�


2�

 
!

"

#
$

We would standardize X by using the following transformation:

Z
X

n
N

x

x
�

��


 /
~ ( , )01
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A.9 Student’s t distribution

The t distribution is used when the population variance is unknown. In the standard-

ization of X , the sample standard deviation, Sx, is used rather than the population stan-

dard deviation, 
x :

t
X

S n
N

k

k

x

x
�

�

�
�
 
!

"
#
$

�

/
~ ,0

2

Properties of the t distribution

1 The t distribution is symmetric around its mean.

2 The mean of the t distribution is zero and its variance is k/(k – 2) when k > 2, where

k is equal to degrees of freedom, here equal to n – 1 (the denominator of the for-

mula for sample variance).

3 Since the variance of the standard t distribution is larger than the variance of the

standard normal distribution, it has larger spread in the tails of the distribution.

But as the number of observations increases, the t distribution converges to the

normal distribution.

A.10 Chi-square (�2 ) distribution

While the Z and t distributions are used for the sampling distributions of the sample

mean, X , the chi-square (�2 ) distribution is used for the sampling distribution of the

sample variance,

S
X X

n
x

i

i

n
2

2

1 1
�

�

��
	

( )

The square of a standard normal variable is distributed as a chi-square (�2 ) probability

distribution with one degree of freedom:

Z 2
1

2� �
( )

Now let Z1, Z2, Z3, ..., Zk be k independent standardized random variables (each

with a mean of zero and a variance of one). Then the sum of the squares of these Zs fol-

lows a chi-square distribution:

Z Z Z Z Zi k k
2

1
2

2
2

3
2 2 2� � � � �	 � ~

( )
�

Properties of the chi-square distribution

1 Unlike the normal distribution, the chi-square distribution takes only positive

values, and ranges from zero to infinity.

2 Unlike the normal distribution, the chi-square distribution is a skewed distribu-

tion yet becomes more symmetrical and approaches the normal distribution as

degrees of freedom increase.

3 The expected value of a chi-square random variable is k and its variance is 2k,

where k is equal to degrees of freedom.
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4 If W1 and W2 are two independent chi-square variables with k1 and k2 degrees of

freedom, respectively, then their sum, (W1 + W2), is also a chi-square variable with

degrees of freedom equal to (k1 + k2).

A.11 F distribution

The F distribution, also known as a variance ratio distribution, is useful in comparing

the sample variances of two normally distributed random variables that are independ-

ent of one another. Let X1, X2, X3, ..., Xn be a random sample of size n from a normal

population with mean � x and variance 
x
2 , and let Y1, Y2, Y3, ..., Ym be a random

sample of size m from a normal population with mean� y and variance 
y
2 . The follow-

ing ratio, used in determining whether the two population variances are equal, is dis-

tributed as an F distribution with (n – 1) and (m – 1) degrees of freedom in the

numerator and denominator, respectively:

F
S

S

X X n

Y Y m
Fx

y

i
n

i

i
m

i
n� �

� �

� �
�

�
�

2

2
1

2

1
2 1

1

1

�

�

( ) /( )

( ) /( )
~ ,m�1

Properties of the F distribution

1 Like the chi-square distribution, the F distribution is also skewed to the right and

ranges between zero and infinity.

2 Like the t and chi-square distributions, the F distribution approaches the normal

distribution as k1 and k2, the degrees of freedom for the numerator and denomina-

tor, respectively, increase in value.

3 The square of a t-distributed random variable with k degrees of freedom follows

an F distribution with one degree of freedom in the numerator and k degrees of

freedom in the denominator:

t F
k k
2

1� ,

4 For large denominator df, the numerator df times the F value is approximately

equal to the chi-square value with the numerator df. That is

mFm,n = ��
� as n & �.

where m and n are numerator and denominator df.

A.12 Statistical inference

The concept of statistical inference refers to the drawing of conclusions about the

nature of some population on the basis of a random sample that has been drawn from

that population. This requires estimation and hypothesis testing. Estimation involves

collecting a random sample from the population and obtaining an estimator, such as X

(also known as a sample statistic). Hypothesis testing involves assessing the veracity

of a value based on a prior judgment or expectation about what that value may be. For

example, we may assume that the average female height in a population is 5'5", or 165

centimeters, and choose a random sample of females from the population to see

whether or not the average height from that sample is statistically different from 165
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cm. This is the essence of hypothesis testing. If this is what we are testing, we can set up

the null (H0) and alternative (H1) hypotheses as follows:

H0: � x = 165 cm

H1: � x � 165 cm

As we will see shortly, this is a two-tailed test. If we are interested in testing whether or

not the true population mean is less than 165 cm instead of simply not being equal to

165 cm, we can set up the null and alternative hypotheses as follows:

H0: � x = 165 cm

H1: � x < 165 cm

As we will see shortly, this is a one-tailed test.

There are two methods we can use for hypothesis testing – interval estimation and

point estimation. In interval estimation, we set up a range around X where the true

(population) value of the mean is likely to lie. The created interval is referred to as a

confidence interval, where our confidence in our conclusions is based on the proba-

bility of committing Type I error, the probability of rejecting the null hypothesis when

it is true.5 Type I error is often denoted by �. The interval is defined as:

P(L � �� x U) = 1 – �, where 0 < � < 1.

In calculating the lower (L) and upper (U) limits, recall that6

t
X

S n

x

x
�

��

/

In creating a 95% confidence interval, the critical t value for a reasonably large

number of degrees of freedom is equal to 1.96.7 Since the t distribution is symmetrical,

the t values are –1.96 and 1.96. We can therefore create the interval as:

P(–1.96 � t �1.96)

P(–1.96 �
�

�
X

S n

x

x

�

/
1.96)

Rearranging, we have:

P X
S

n
X

S

n

x
x

x� � � ��
 
!

"
#
$ �196 196 0 95. . .�

In point estimation, a single numerical value is used, such as X , and is tested

against a proposed (hypothesized) population mean. For example, if we collect
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5 Type II error is the probability of not rejecting the null hypothesis when it is false, which is generally

believed to be the milder of the two errors. (If someone is facing the death penalty, would you rather execute

an innocent person – akin to Type I error – or not execute a guilty person?) It is not possible to minimize

both types of error without increasing the number of observations. The power of the test, which is

sometimes calculated, is equal to one minus the probability of committing Type II error.

6 We use the t distribution rather than the Z distribution because we generally assume that the

population variance is unknown.

7 This value is obtained from the t table, available in standard statistics textbooks.



information on heights for a random sample of 21 females and find the mean height,

X , to be 162 cm, with a sample standard deviation of 2, we can test the above two-tailed

hypothesis using an � value of 5% by calculating the actual t value and comparing it to

the critical t value (of 2.086 for 20 degrees of freedom). The actual t value is:

t
X

S n

x

x
�

�
�

�
� �

�

/ /
.

162 165

2 20
6708

Since the value of –6.708 is greater in absolute value than 2.086, we can reject the null

hypothesis (at the 95% confidence level) that the population mean is 165 cm, in favor

of the alternative hypothesis that it is not 165 cm.

A 95% confidence interval around the sample mean would look like this:

P X
S

n
X

S

n

x
x

x� � � ��
 
!

"
#
$ �196 196 0 95. . .�

P x162 2 086
2

20
162 2 086

2

20
0 95� � � ��

 
!

"
#
$ �. . .�

P x( . . ) .161067 162 933 0 95� � ��

Note that 165 lies outside the confidence interval. Thus, based on the 95% confidence

interval one can reject the null hypothesis that the true population height is 165 cm in

favor of the alternative hypothesis that the true population height is not equal to 165

cm.

If we were to conduct a one-tailed test for this example rather than a two-tailed test,

the critical t value (from the table) would be 1.725, and we would again reject the null

hypothesis in favor of the alternative hypothesis that the population mean is less than

165 cm.

A 95% confidence interval for this one-tailed test would look like this:

P X
S

n
x

x�� � � ��
 
!

"
#
$ �� 1725 0 95. .

P x�� � � ��
 
!

"
#
$ �� 162 1725

2

20
0 95. .

P x( . ) .�� � � �� 162771 0 95

Note that 165 lies outside the confidence interval. Thus, based on the 95% confidence

interval one can reject the null hypothesis that the true population height is 165 cm in

favor of the alternative hypothesis that the true population height is less than 165 cm.

Properties of point estimators

1 Linearity: An estimator is said to be a linear estimator if it is a linear function of the

observations. For example

X
X

n

i

i

n

�
�
	

1
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2 Unbiasedness: An estimator �5 is said to be an unbiased estimator of 5 if the ex-

pected value of �5 is equal to 5, that is, E(�)5 5� . For example, E X X( ) �� , where� X

and X are the population and sample mean values of the random variable X.

3 Minimum variance: An estimator is a minimum variance estimator if its variance

is the smallest of all competing estimators of that parameter. For example, var(X)

< var(Xmedian) since var(Xmedian) = ( / )� 2 var(X).

4 Efficiency: If we consider only unbiased estimators of a parameter, the one with the

smallest variance is called the best, or efficient, estimator.

5 Best linear unbiased estimator (BLUE): If an estimator is linear, is unbiased, and

has minimum variance in a class of all linear unbiased estimators of a parameter, it

is called a best linear unbiased estimator.

6 Consistency: An estimator is said to be a consistent estimator if it approaches the

true value of the parameter as the sample size gets larger and larger.

Hypothesis testing may be conducted using the F and chi-square distributions as

well, examples of which will be illustrated in Exercises A.17 and A.21.

Exercises

A.1 Write out what the following stand for:

(a) xi

i

�

�
	 3

3

4

(b) ( )2
1

4

x yi
i

i
�
	 �

(c) x yi j
ij ��
		

1

2

1

2

(d) k
i�
	

31

100

A.2 If a die is rolled and a coin is tossed, find the probability that the die shows an

even number and the coin shows a head.

A.3 A plate contains three butter cookies and four chocolate chip cookies.

(a) If I pick a cookie at random and it is a butter cookie, what is the probability

that the second cookie I pick is also a butter cookie?

(b) What is the probability of picking two chocolate chip cookies?

A.4 Of 100 people, 30 are under 25 years of age, 50 are between 25 and 55, and 20 are

over 55 years of age. The percentages of the people in these three categories who read

the New York Times are known to be 20, 70, and 40 per cent, respectively. If one of

these people is observed reading the New York Times, what is the probability that he or

she is under 25 years of age?

A.5 In a restaurant there are 20 baseball players: 7 Mets players and 13 Yankees play-

ers. Of these, 4 Mets players and 4 Yankees players are drinking beer.

(a) A Yankees player is randomly selected. What is the probability that he is

drinking beer?
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(b) Are the two events (being a Yankees player and drinking beer) statistically

independent?

A.6 Often graphical representations called Venn diagrams, as in Figure A2.1, are

used to show events in a sample space. The four groups represented in the figure per-

tain to the following racial/ethnic categories: W = White, B = Black, H = Hispanic, and

O = Other. As shown, these categories are mutually exclusive and collectively exhaus-

tive. What does this mean? Often in surveys, individuals identifying themselves as His-

panic will also identify themselves as either White or Black. How would you represent

this using Venn diagrams? In that case, would the probabilities add up to 1? Why or

why not?

A.7 Based on the following information on the rate of return of a stock, compute the

expected value of x.

Rate of return (x) f(x)

0 0.15

10 0.20

15 0.35

30 0.25

45 0.05

A.8 You are given the following probability distribution:

X

2 4 6

Y 50 0.2 0.0 0.2

60 0.0 0.2 0.0

70 0.2 0.0 0.2

Compute the following:

(a) P[X = 4,Y > 60]

(b) P[Y < 70]

(c) Find the marginal distributions of X and Y.

(d) Find the expected value of X.

(e) Find the variance of X.

(f) What is the conditional distribution of Y given that X = 2?

(g) Find E[Y|X = 2].

(h) Are X and Y independent? Why or why not?
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A.9 The table below shows a bivariate probability distribution. There are two vari-

ables, monthly income (Y) and education (X).

X = Education

High School College f(Y)

Y = Monthly income $1000 20% 6%

$1500 30% 10%

$3000 10% 24%

f(X)

(a) Write down the marginal probability density functions (PDFs) for the vari-

ables monthly income and education. That is, what are f(X) and f(Y)?

(b) Write down the conditional probability density function, f(Y|X = College)

and f(X|Y = $3000). (Hint: You should have five answers.)

(c) What are E(Y) and E(Y|X = College)?

(d) What is var(Y)? Show your work.

A.10 Using tables from a statistics textbook, answer the following.

(a) What is P(Z < 1.4)?

(b) What is P(Z > 2.3)?

(c) What is the probability that a random student’s grade will be greater than 95

if grades are distributed with a mean of 80 and a variance of 25?

A.11 The amount of shampoo in a bottle is normally distributed with a mean of 6.5

ounces and a standard deviation of one ounce. If a bottle is found to weigh less than 6

ounces, it is to be refilled to the mean value at a cost of $1 per bottle.

(a) What is the probability that a bottle will contain less than 6 ounces of

shampoo?

(b) Based on your answer in part (a), if there are 100,000 bottles, what is the cost

of the refill?

A.12 If X ~ N(2,25) and Y ~ N(4,16), give the means and variances of the following

linear combinations of X and Y:

(a) X + Y (Assume cov(X,Y) = 0)

(b) X – Y (Assume cov(X,Y) = 0)

(c) 5X + 2Y (Assume cov(X,Y) = 0.5)

(d) X – 9Y (Assume correlation coefficient between X and Y is –0.3)

A.13 Let X and Y represent the rates of return (per cent) on two stocks. You are told

that X ~ N(18,25) and Y ~ N(9,4), and that the correlation coefficient between the two

rates of return is –0.7. Suppose you want to hold the two stocks in your portfolio in

equal proportion. What is the probability distribution of the return on the portfolio? Is

it better to hold this portfolio or to invest in only one of the two stocks? Why?

A.14 Using statistical tables, find the critical t values in the following cases (df stands

for degrees of freedom):

(a) df = 10, � = 0.05 (two-tailed test)

(b) df = 10, � = 0.05 (one-tailed test)

(c) df = 30, � = 0.10 (two-tailed test)
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A.15 Bob’s Buttery Bakery has four applicants for jobs, all equally qualified, of whom

two are male and two are female. If it has to choose two candidates at random, what is

the probability that the two candidates chosen will be the same sex?

A.16 The number of comic books sold daily by Don’s Pictographic Entertainment

Store is normally distributed with a mean of 200 and a standard deviation of 10.

(a) What is the probability that on a given day, the comic bookstore will sell less

than 175 books?

(b) What is the probability that on a given day, the comic bookstore will sell

more than 195 books?

A.17 The owner of two clothing stores at opposite ends of town wants to determine if

the variability in business is the same at both locations. Two independent random

samples yield:

n

S

n

S

1

1
2

2

2
2

41

2000

41

3000

�

�

�

�

days

days

$

$

(a) Which distribution (Z, t, F or chi-square) is the appropriate one to use in this

case? Obtain the (Z, t, F, or chi-square) value.

(b) What is the probability associated with the value obtained? (Hint: Use an ap-

propriate table from a statistics textbook.)

A.18 (a) If n=25, what is the t-value associated with a (one-tailed) probability of 5%?

(b) If X~N(20,25), what is P(X > 15.3) if n = 9?

A.19 On average, individuals in the USA feel in poor physical health on 3.6 days in a

month, with a standard deviation of 7.9.8 Suppose that the variable days in poor physi-

cal health is normally distributed, with a mean of 3.6 and a standard deviation of 7.9

days. What is the probability that someone feels in poor physical health more than 5

days in a month? (Hint: Use statistical tables.)

A.20 The size of a pair of shoes produced by Shoes R Us is normally distributed with

an average of 8 and a population variance of 4.

(a) What is the probability that a pair of shoes picked at random has a size

greater than 6?

(b) What is the probability that a pair has a size less than 7?

A.21 It has been shown that, if Sx
2 is the sample variance obtained from a random

sample of n observations from a normal population with variance 
x
2 , then statistical

theory shows that the ratio of the sample variance to the population variance multi-

plied by the degrees of freedom (n – 1) follows a chi-square distribution with (n – 1)

degrees of freedom:
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Suppose a random sample of 30 observations is chosen from a normal population with


x
2 = 10 and gave a sample variance of Sx

2 = 15. What is the probability of obtaining

such a sample variance (or greater)? (Hint: Use statistical tables.)

Exponential and logarithmic functions

In Chapter 2 we considered several functional forms of regression models, one of them

being the logarithmic model, either double-log or semi-log. Since logarithmic func-

tional forms appear frequently in empirical work, it is important that we study some of

the important properties of the logarithms and their inverse, the exponentials.

Consider the numbers 8 and 64. As you can see

64 = 82 (1)

Written this way, the exponent 2 is the logarithm of 64 to the base 8. Formally, the loga-

rithm of a number (e.g. 64) to a given base (e.g. 8) is the power (2) to which the base (8)

must be raised to obtain the given number (64).

In general, if

Y b bX� �( )0 (2)

then

logb Y X� (3)

In mathematics function (2) is called the exponential function and (3) is called the

logarithmic function. It is clear from these equations that one function is the inverse of

the other function.

Although any positive base can be used in practice, the two commonly used bases

are 10 and the mathematical number e = 2.71828....

Logarithms to base 10 are called common logarithms. For example,

log .10 64 181� ; log .10 30 148�

In the first case 64 �101.81 and in the second case 30 �101.48.

Logarithms to base e are called natural logarithms. Thus,

log .e 64 4 16� and log .e 30 3 4�

By convention, logarithms to base 10 are denoted by ‘log’ and to base e by ‘ln’. In the

preceding case we can write log 64 or log 30 or ln 64 and ln 30.

There is a fixed relationship between common and natural logs, which is

ln . logX X�23026 (4)

That is, the natural log of the (positive) number X is equal to 2.3026 times the log of X

to base 10. Thus,

ln 30 = 2.3026 log 30 = 2.3026(1.48) �3.4, as before.

In mathematics the base that is usually used is e.
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It is important to keep in mind that logarithms of negative numbers are not defined.

Some of the important properties of logarithms are as follows: let A and B be some

positive numbers. It can be shown that the following properties hold:

1. ln( ) ln lnA B A B+ � � (5)

That is, the log of the product of two positive numbers A and B is equal to the sum of

their logs. This property can be extended to the product of three or more positive

numbers.

2. ln ln ln
A

B
A B�

 
!

"
#
$ � � (6)

That is, the log of the ratio of A to B is equal the difference in the logs of A and B.

3. ln( ) ln lnA B A B �  (7)

That is, the log of the sum or difference of A and B is not equal to the sum or difference

of their logs.

4. ln( ) lnA k Ak � (8)

That is, the log of A raised to power k is k times the log of A.

5. ln e = 1 (9)

That is, the log of e to itself as a base is 1 (as is the log of 10 to base 10).

6. ln 1 0�

That is, the natural log of the number 1 is zero; so is the common log of the number 1.

7. If Y X� ln , then
d

d

d(ln

d

Y

X

X

X X
� �

) 1
(10)

That is, the derivative or rate of change of Y with respect to X is 1 over X. However, if

you take the second derivative of this function, which gives the rate of change of the

rate of change, you will obtain:

d

d

2

2 2

1Y

X X
� � (11)

That is, although the rate of change of the log of a (positive) number is positive, the rate

of change of the rate of change is negative. In other words, a larger positive number will

have a larger logarithmic value, but it increases at a decreasing rate. Thus,

ln( ) .10 23026� but ln( ) .20 2 9957� . That is why the logarithmic transformation is called

a nonlinear transformation. All this can be seen clearly from Figure A2.2.

8. Although the number whose log is taken is always positive, its logarithm can be posi-

tive as well as negative. It can be easily verified that if

0 1 0

1 0

1 0

� � �

� �

� �

Y Y

Y Y

Y Y

, ln

, ln

, ln

376 Appendix 2



Logarithms and percentage changes

Economists are often interested in the percentage change of a variable, such as the per-

centage change in GDP, wages, money supply, and the like. Logarithms can be very

useful in computing percentage changes. To see this, we can write (10) above as:

d
d

(ln )X
X

X
�

Therefore, for a very small (technically, infinitesimal) change in X, the change in ln X is

equal to the relative or proportional change in X. If you multiply this relative change by

100, you get the percentage change.
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In practice if the change in X (= dX) is reasonably small, we can approximate the

change in ln X as a relative change in X, that is, for small changes in X, we can write

(ln ln )
( )

X X
X X

X
t t

t t

t

� �
�

�

�
�

�
1

1

1

relative change in X,
or percentage change if multiplied by 100

Some useful applications of logarithms

Doubling times and the rule of 70
Suppose the GDP in a country is growing at the rate of 3% per annum. How long will

take for its GDP to double? Let r = percentage rate of growth in GDP and let n =

number of years it takes for GDP to double. Then the number of years (n) it takes for

the GDP to double is given by the following formula:

n
r

�
70

(12)

Thus, it will take about 23 years to double the GDP if the rate of growth of GDP is 3%

per annum. If r = 8%, it will take about 8.75 years for the GDP to double. Where does

the number 70 come from?

To find this, let GDP (t + n) and GDP (t) be the values of GDP at time (t + n) and at

time t (it is immaterial where t starts). Using the continuous compound interest for-

mula of finance, it can be shown that

GDP t n GDP t r n( ) ( )� � �e (13)

where r is expressed in decimals and n is expressed in years or any convenient time

unit.

Now we have to find n and r such that

er n GDP t n

GDP t
� �

�
�

( )

( )
2 (14)

Taking the natural logarithm of each side, we obtain

r n� � ln 2 (15)

Note: There is no need to worry about the middle term in (14), for the initial level of

GDP (or any economic variable) does not affect the number of years it takes to double

its value.

Since

ln (2) = 0.6931 � 070. (16)

we obtain from (15)

n
r

�
070.

(17)
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Multiplying the right-hand side in the numerator and denominator by 100, we obtain

the rule of 70. As you can see from this formula, the higher the value of r, the shorter

the time it will take for the GDP to double.

Some growth rate formulas
Logarithmic transformations are very useful in computing growth rates in variables

that are functions of time-dependent variables. To show this, let the variable W be a

function of time,W f t� ( ), where t denotes time. Then the instantaneous (i.e. a point in

time) rate of growth of W, denoted as gW , is defined as:

g
W t

W W

W

t
W � �

d d d

d

/ 1
(18)

For example, let

W X Z� � (19)

where W= nominal GDP, X = real GDP, and Z is the GDP price deflator. All these vari-

ables vary over time. Taking the natural log of the variables in (19), we obtain:

ln ln lnW X Z� � (20)

Differentiating this equation with respect to t (time), we obtain:

1 1 1

W

W

t X

X

t Z

Z

t

d

d

d

d

d

d
� � (21)

Or,

g g gW X Z� � (22)

In words, the instantaneous rate of growth of W is equal to the sum of the instanta-

neous rates of growth of X and Z. In the present instance, the instantaneous rate of

growth of nominal GDP is the sum of the instantaneous rates of growth of real GDP

and the GDP price deflator, a finding that should be familiar to students of economics.

In general, the instantaneous rate of growth of a product of two or more variables is

the sum of the instantaneous rates of growth of its components.

Similarly, it can be shown that if we have

W
X

Z
� (23)

then

g g gW X Z� � (24)

Thus, if W = per capita income (measured by GDP), X = GDP, and Z = total popula-

tion, then the instantaneous rate of growth of per capita income is equal to the instan-

taneous rate of growth of GDP minus the instantaneous rate of growth of the total

population, a proposition well known to students of economic growth.
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2SLS see two-stage least squares

abortion rates 83–5

absolute frequency 358

ACF see autocorrelation function

adaptive expectations model 327

ADF see Dickey–Fuller test, augmented

adjusted R2 44

aggregate consumption function

USA 133–5

AIC see Akaike’s Information Criterion

Akaike Information Criterion 44, 104

Analysis of Variance 12

table 16

AOV see Analysis of Variance

ARCH model 249–55

extensions 257–8

least squares 253–4

maximum likelihood 254–5

ARIMA see autoregressive integrated moving

average model

ARIMA modeling 267–8

ARMA see autoregressive moving average

model

asymptotic bias 324

asymptotic sample theory 129

augmented Engle–Granger test 240

autocorrelation 9, 33, 97–113, 138

coefficient of 101

partial 269

remedial measures 104–9

tests of 99

autocorrelation function 208

autoregressive conditional heteroscedasticity

see ARCH model

autoregressive distributed lag models 141–4

autoregressive integrated moving average

model 268, 274–5

autoregressive model 109, 138, 267–8

autoregressive moving average

model 268–73

auxiliary regression 70

balanced panel 290

base category 169

Bayes’ Theorem 359

Bayesian statistics 4

best linear unbiased estimator 9

best unbiased estimator 9

beta coefficients 42

BLUE see best linear unbiased estimator

Box–Jenkins methodology 267–8

Breusch–Godfrey test 102–4, 111

Breusch–Pagan test 86–87

BUE see best unbiased estimator

cancer 125–7

categorical variables see dummy variables

causality 280

CDF see cumulative distribution function

censored regression models 192

censored sample models 191

censoring 309

Central Limit Theorem 366

charitable giving 290–5

chi-square distribution 367

classical linear regression model 8–10

CLM see conditional logit models

CLRM see classical linear regression model

Cobb–Douglas production function 25

USA 26–8

coefficient of determination 13–15

coefficient of expectations 327

coin toss 357

cointegration 234, 240–6

error correction mechanism 241–3

tests 240–1

unit root tests 240–1

comparison category 169

conditional expectation 8

conditional forecasts 264

conditional logit models 167, 174–7

conditional mean 2

conditional probability 361

conditional probit models 167
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confidence band 265

confidence coefficient 11

confidence interval 11–12, 17, 369

consistency property 302

consumption function 138–9, 263

autoregressive 110

consumption function, USA 97–100

contingency analysis 264

continuous random variables 360

continuous time analysis 308

correlation coefficient 365

correlogram 218–20

covariance 364–5

CPM see conditional probit models

cross-sectional data 5

cumulative distribution function 155, 360

of time 308

Current Population Survey 14

cutoffs 181

data

quality 6

sources 6

types of 5

data mining 75

data sets 350–5

degrees of freedom 10, 364

dependent variable 2

deseasonalization 58

deterministic component 2

deterministic trend 225

Dickey–Fuller test 221–3

augmented 223–5

difference stationary process 226

differential intercept dummies 49, 51, 56,

63, 293

differential slope coefficients 295

differential slope dummies 51, 56, 63

discrete random variables 359

discrete time analysis 307

distributed lag model 136

DLM see distributed lag model

dollar/euro exchange rate 216–27

Dow Jones Index 248

drift 228–9

drift parameter 229

DSP see difference stationary process

dummy regressors 209

dummy variables 3, 15, 47, 204, 209

interpretation of 49

seasonal data 58–61

trap 48, 293

duration dependence 309, 313

duration spell 307

Durbin’s h statistic 110

Durbin–Watson statistic 27, 33, 101

dynamic regression 327

dynamic regression models 135–45

earnings and educational attainment 334–8

ECM see error components model; error cor-

rection mechanism

economic forecasting see forecasting

efficient market hypothesis 228

endogeneity 320–1

endogenous regressors 320

Engel expenditure functions 34–5

Engle–Granger test 240, 245–6

equidispersion 206, 210

error components model 298

error correction mechanism 241–3, 277

error sum of squares 7

error term

non-normal 129

probability distribution 128–9

errors of measurement 124–5

ESS see explained sum of squares

estimator 7, 9, 363

best linear unbiased 9

best unbiased 9

efficient 9

estimators, inconsistency 138–9

event 357

Eviews 15

ex ante/post forecasts 264

Excel 11

exogeneity 136

expected value 362–3

experiments 357

exponential functions 375–9

explained sum of squares 17

exponential probability distribution 310–13

fashion sales 58–62

F distribution 368

feasible generalized least squares 106

FEM see fixed effects model

FGLS see feasible generalized least squares

first-difference transformation 105

fixed effect within group estimator 296–8

fixed effects estimators 302

fixed effects least squares dummy vari-

able 293–5

fixed effects model 299–302

fixed effects regression model 293

food expenditure 34–7

forecast error 264
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forecasting 15, 19, 144–5, 261–87

ARIMA 274–5

measures of accuracy 287–8

regression models 262–7

types of 264

VAR 270–80

frequency distribution 358

Frisch–Waugh Theorem 62

F test 12

GARCH model 255–7

GARCH-M model 257

Gaussian white noise process 219

Generalized Autoregressive Conditional

Heteroscedasticity see GARCH model

generalized least squares 6

German Socio-Economic Panel 289

GESOEP see German Socio-Economic

Panel

goodness of fit 43–5

graduate school decision 187–9

Granger causality test 280–4

Granger Representation Theorem 242

graphical analysis 218

graphical tests of autocorrelation 99–100

gross private investments and gross private

savings 55–8

grouped data 160–1

growth rates 30–2, 379

HAC standard errors 108–9, 111–12

Hausman test 298, 300–1, 340–1, 346

hazard function 308–9

hazard ratio 311–12, 315–16

heterogeneity 5

unobserved 309

heteroscedasticity 28, 82–3, 85–95, 198

autocorrelated 249

consequences of 82–3

detection 86–9

remedial measures 89–90

holdover observations 15

homoscedasticity 8, 82

hourly wages 14–18

hypothesis testing 11, 368–9

IBM stock price 230–2, 269–73

identities 131

IIA see independence of irrelevant

alternatives

ILS see indirect least squares

impact multipliers 132

imperfect collinearity 68–70

income determination 131

independence of irrelevant alterna-

tives 173–4

index variables 181

indicator variables see dummy variables

indirect least squares 132–5

influence points 125

instrumental variables 111, 124, 139, 301,

321, 328–30

diagnostic testing 339–40

hypothesis testing 338–9

interactive dummies 49–50, 57

interval estimation 369

interval forecasts 263

interval scale 3

Jarque–Bera statistic 53

Jarque–Bera test 128–9

joint probability 359–60

Koyck distributed lag model 137–41

kurtosis 53, 204

lag 218–19

Lagrange multiplier test 118–21

latent variables 181

mean value 196

law enforcement spending 333

level form regression 105

leverage 125

likelihood ratio 172

likelihood ratio statistic 159

limited dependent variable regression

models 191–201

linear probability model 153

linear regression 4

linear regression model 2–22, 204

defined 2

estimation 6–8

linear restriction 29–30

linear trend model 33

lin-log models 34–6

logarithmic functions 374–9

logistic probability distribution 155

logit model 154–61, 163

log-linear models 25–6, 30–3

compared with linear model 28, 40–1

long panel 290

LPM see linear probability model

LRM see linear regression model

marginal probability 361

marginal propensity to consume 262
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married women’s hours of work 71–5,

77–8, 93–4

maximum likelihood 22–4, 157, 170, 196–7,

207–8

mean equation 252

memoryless property 311

mixed logit models 177

ML see maximum likelihood

MLM see multinomial logit models

model specification errors 109, 114–37, 139

Monte Carlo simulation 331

moving average model 268

MPM see multinomial probit models

MRM see multinomial regression models

multicollinearity 9, 68–79

detection 71–4

remedial measures 74–5

multinomial logit models 167–74

multinomial probit models 167

multinomial regression models 166–77, 179

choice-specific data 167

chooser or individual-specific data 167

mixed 167–8

nominal 166

ordered 166

unordered 166

multiple instruments 342–4

multiplier 136, 143

MXL see mixed logit models

National Longitudinal Survey of Youth 289,

334

NBRM see negative binomial regression

model

NCLRM see normal classical linear regression

model

negative binomial regression model 203, 212

Newey–West method 108, 111

NLSY see National Longitudinal Survey of

Youth

nominal scale 3, 47

nonsystematic component 2

normal classical linear regression model 9

normal distribution 9, 365

odds ratio 156, 170

OLM see ordered logit models

OLS see ordinary least squares

omitted variable bias 325–6

OMM see ordered multinomial models

one-way fixed effects model 294

order condition of identification 135

ordered logit models 181–4

predicting probabilities 185

ordered multinomial models 181

ordinal logit models 180

ordinal probit models 180

ordinal regression models 180–90

ordinal scale 3

ordinary least squares 6–7

outliers 125–6

outline of book 19–21

over-differencing 226

overdispersion 206, 210

overfitting 121

pairwise correlation 72

panel data 5

importance of 289–90

panel data regression models 289–304

Panel Study of Income Dynamics 289

panel-corrected standard errors 302

parallel regression lines 186

partial likelihood 315

patents and R&D expenditure 203–6

PCA see principal component analysis

PCE see personal consumption expenditure

PDI see personal disposable income

perfect collinearity 68

permanent income hypothesis 135, 333

personal consumption expenditure 236

personal disposable income 236

Phillips curve 142

point estimation 369, 371

point forecasts 263

Poisson probability distribution 205

Poisson regression models 203

limitation 209–10

polychotomous (multiple category) regres-

sion models see multinomial regression

models

polynomial regression models 37–9

polytomous regression models see

multinomial regression models

pooled estimators 302

pooled OLS regression 291–2

population 357

population model 2

population regression function 7

PPD see Poisson probability distribution

Prais–Winsten transformation 105

PRF see population regression function
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